6C PNL-4714 UC-41

The Use of Multi-Element Beta Dosimeters for Measuring Dose Rates in the TMI-2 Containment Building

R. I. Scherpelz G. W. R. Endres I. A. Rathbun

July 1983

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute

DISCLAIMER

а

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RLO 1830

Printed in the United States of America Available from National Technical Information Service United States Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161

Microfiche A01

Printed Copy

	Price
Pages	Codes
001-025	A02
026-050	A03
051-075	A04
076-100	A05
101-125	A06
126-150	A07
151-175	A08
176-200	A09
201-225	A010
226-250	A011
251-275	A012
276-300	A013

THE USE OF MULTI-ELEMENT BETA DOSIMETERS FOR MEASURING DOSE RATES IN THE TMI-2 CONTAINMENT BUILDING

- L. A. Rathbun

July 1983

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL0 1830

Pacific Northwest Laboratory Richland, Washington 99352

SUMMARY

The use of thermoluminescent dosimeters (TLDs) for beta dosimetry has traditionally involved inaccuracies due to the energy-dependent response of the TLDs. In order to correct for the beta energy spectrum, researchers at the Pacific Northwest Laboratory (PNL--operated by Battelle Memorial Institute) have developed a dosimeter using TLDs under a number of different thicknesses of aluminum shields. These shields provide attenuation to the beta field that depends on the thickness of the shield and the energy of the beta particles striking the dosimeter. This type of dosimeter is able to automatically correct for the energy distribution of the beta radiation field, thus overcoming the energy-dependent inaccuracies of previous TLD-based dosimeters.

The PNL multi-element beta dosimeter has been used in four-element and seven-element configurations. The seven-element configurations were developed to provide better discrimination to low-energy betas. The dosimeters are assembled and analyzed in the PNL TLD Laboratory. Design considerations, analysis procedures, quality assurance, and error determinations for the dosimeters are described in this report. The methods of data analysis used for converting TLD response to dose are also described.

These multi-element dosimeters have been used to measure beta and gamma doses resulting from radioactive contaminants in the Three Mile Island Unit 2 containment building. Over 100 dosimeters have been used in three sets of experiments at a number of locations in the building. This report documents the experiments and presents the doses evaluated by the dosimeters.

iii

ACKNOWLEDGMENTS

We would like to thank Fred Eichner and his colleagues in the PNL TLD Laboratory, Ginnie Tews and Chuck Souder, for their high-quality work in the preparation and analyses of these dosimeters.

Thanks is also extended to Dave Hetzer, EG&G, for taking the responsibility of exposing these dosimeters at TMI-2.

We also appreciate the help of Dr. Francis Tsang, EG&G, for his reviews and advice in preparing this report.

The work done by Marianna Cross in typing and assembling this report has been invaluable and appreciated.

CONTENTS

SUMM	ARY .	•	•	•	•	•	•	•	•	•	•	•		iii
ACKN	OWLEDGMENT	S	•	•	•	٠	•	•	•	•	•	•	•	۷
INTR	ODUCTION	•	•	•	•	•	•	•	•	•	•		•	1
PNL	MULTI-ELEM	IENT BI	eta do	DSIME	TER I	DESCRI	IPTIO	N .	•	•	•	•	•	3
	PHYSICAL	DESCRI	IPTIO	I OF	THE 1	DOSIME	ETER	•	•	•	•	•	•	3
	DOSIMETER	SHIEI	LD CHA	ARACI	ERIS	TICS		•	•	•	•	• .	•	5
	CHARACTER	ISTICS	S AND	QA I	PROCE	DURES	FOR	THE	TLDS		•	•	•	10
CALI	BRATION AN	D MEAS	SUREM	ENT	•	•	•	•	•	•	•	•	•	12
	TLD READE	R SYST	ΓEΜ	•	•	•	•		•	•	•	•	•	12
	MULTI-ELE	MENT I	DOSIM	ETER	CALI	BRATIO	ON	•	-	-	•	•	•	14
DATA	ANALYSIS	METHOI	D	•	•	•	•	•	•	•	•	-	•	17
COMP	ILATION OF	DATA	•	•	٠	•	•	•	•	•	•	•	•	23
	DESCRIPTI	ON OF	EXPE	RIMEN	ITS	•	•		•	-	•		•	23
CONC	LUSIONS	•	•	•	•	•	•	٠	•	•	•	•	•	38
REFE	RENCES	•	•		•		•	•	•	•	•	•		41
APPE	NDIX I - S	OURCE	CODE	LIST	ING I	FOR RA	AT I 07	•	•	•	•	•	-	1.1
APPE	NDIX II -	OUTPU	T LIST	FINGS	5 FOR	RATIO)7 RU	NS	•	•	-		•	II.1

FIGURES

1	PNL Eight-Element Dosimeter	•	•	4
2	PNL Eight-Element Dosimeter Shields		•	6
3	Beta Particle Range-Energy Curve	•		7
4	Beta Response - Seven Element Dosimeter	•	•	8
5	Photon Response - Seven Element Dosimeter	•	•	8
6	Comparison of PNL and Vendor 1 Dosimeters	•	•	9
7	Comparison of PNL and Vendor 2 Dosimeters	•	•	9
8	Harshaw Model 2080 Thermoluminescence Analyzer and Picoprocessor	•	•	13
9	Physical Layout of Thermoluminescence Analyzer	•	-	13
10	Typical TLD Reader Glow Curves	•	-	14
11	Beta Calibration Function Versus Element Ratios	•	•	16
12a	Pre-Gross Decontamination Experiment Dosimeter Placement and Results - Dome Monitor and Elevator Shaft Roof			24
12b	Pre-Gross Decontamination Experiment Dosimeter Placement and Results - 305 ft Elevation	•	•	25
12c	Pre-Gross Decontamination Experiment Dosimeter Placement and Results - 347 and 367 ft Elevations			26
13a	Post Gross Decontamination Experiment Dosimeter Placement and Results - 305 ft Elevation	•	•	31
13b	Post Gross Decontamination Experiment Dosimeter Placement and Results - 347 and 367 ft Elevations .	•	•	32
14	Preflushing of the Reactor Building Basement TLD Tree Measurement Locations	•	•	35

TABLES

1	Beta Calibration Sources	14
2	Raw Data for Exposed Four-Element Dosimeter .	18
3	Equations for Converting Element Ratios to Calibration Factors	18
4	Analysis of Exposed Four-Element Dosimeter .	19
5	Data for Exposed Seven-Element Dosimeter	19
6a	Pre-Gross Decontamination Experiment Dosimeter Placement and Results - Dome Monitor and Elevator Shaft Roof	27
6b	Pre-Gross Decontamination Experiment Dosimeter Placement and Results - 305 Foot Elevation .	28
бс	Pre-Gross Decontamination Experiment Dosimeter Placement and Results - 347 and 367 Foot Elevations	29
7a	Post-Gross Decontamination Experiment Dosimeter Placement and Results - 305 Foot Elevation .	33
7b	Post-Gross Decontamination Experiment Dosimeter Placement and Results - 347 and 367 Foot Elevations	34
8	Placement of TLD Trees During Pre-Flushing of the Reactor Building Basement	36
9	Pre-Flushing Experiment TLD TreeBeta and Gamma Doses from Three Types of Dosimeters	47

INTRODUCTION

There is a considerable amount of radioactive material contaminating many interior surfaces of the containment building of the Three Mile Island Unit 2 reactor as a result of the accident in March 1979. As work has begun on performing decontamination and other tasks in the building, it is important to have an accurate description of the contamination on these surfaces. This report describes dosimeters that were developed to measure dose rates due to the surface contamination found in TMI-2 containment. These dosimeters are capable of measuring doses due to beta and gamma radiation emitted by radionuclides deposited on the contaminated surfaces and suspended in the air near these surfaces. This report discusses the design of the dosimeter, and the calibration procedures and methods of using them for dose determinations. The report also describes the use of the dosimeters in TMI-2 containment and presents the results of this application.

A dosimeter may be placed near a contaminated surface for two basic purposes: (1) to give an indication of the quantity of radioactive material on the surface and (2) to give an estimate of the radiological hazard to a person positioned near the surface. For evaluating the presence of radioactive material, the quantity "dose," measured in units of rad, is most useful. In this study, dose is measured by dosimeters made of 7 LiF, which has energy absorption characteristics for beta and gamma radiation that are very similar to that of tissue, so the dosimeters give a good indication of dose to tissue. For evaluating the radiological hazard to personnel, the "dose equivalent," measured in units of rem, is most useful. (The dose equivalent for beta dosimetry is usually measured at a depth of 7 mg/cm² in tissue.) Since this discussion is concerned only with beta and gamma radiation, the quantities "dose to tissue" and "dose equivalent" are nearly numerically equal. Therefore this discussion will always refer to the dose (meaning "dose to tissue") measured by the dosimeter.

Another radiological quantity, "exposure," is commonly confused with dose and dose equivalent. This quantity is strictly valid only for photons in air, and in this report **it** is only used when discussing calibration procedures

using photons. Exposure is measured in units of roentgens (R). There will be instances in this report where the term "expose" is used, however. This term will be used, for example, when a dosimeter is placed in a radiation field and is therefore exposed to radiation. In this situation the dosimeter will still be used to evaluate the dose.

The dosimeter described in this report is a passive device, designed to be exposed to a field of radiation for a well-defined period of time. As the dosimeter is struck by radiation, material damage occurs in the dosimeter. After the dosimeter is taken from the radiation field, **it** is processed to determine the amount of material damage, and thus evaluate the dose received by the dosimeter. When this dose is divided by the amount of time in the radiation field, the result is an average dose rate. For this type of passive dosimetry, the health physics community has found thermoluminescent dosimeters (TLDs) to be very useful. The material has been shown to be rugged and reliable, with well-defined characteristics for dose determinations. The dose response of TLDs to radiation is linear over a wide range of doses for gammas and betas of any energy likely to be encountered in TMI-2 containment.

The use of TLDs for beta dosimetry has traditionally involved inacurracies for beta dosimetry, however, due to the energy-dependent response of the TLDs to betas. In order to correct for differing beta energy spectra, researchers at the Pacific Northwest Laboratory (PNL) have developed a dosimeter using TLDs under shields of various thicknesses. These shields were chosen to provide differing amounts of attenuation to beta particles of a given energy, so that a mathematical analysis of the TLD responses would give an indication of the energy distribution of beta particles striking the dosimeter.

PNL FIULTI-ELEMENT BETA DOSIMETER DESCRIPTION

PHYSICAL DESCRIPTION OF THE DOSIMETER

The researchers developing this dosimeter wanted to demonstrate that passive beta dosimetry could be accomplished without the resources of a sophisticated laboratory, but could rather be done adequately using the resources available to most health physicists. The holder was made of heavy fiberboard and aluminum. The shields were made of either aluminum or aluminized mylar. The phosphor selected for this dosimeter is 35-mil thick TLD-700, manufactured by Harshaw, a type commonly used by health physicists. Each shield covers three TLD chips; this report refers to each set of three chips and the accompanying shield as a dosimeter element. Two versions of the multi-element dosimeters have been used. The original four-element design did not yield the desired degree of separation for lower energy beta spectra. Therefore, three additional thin shields were added to bring the total to seven. Each dosimeter package is comprised of two four- or seven-element dosimeters placed back-to-back. Thus the four-element dosimeter contains 24 TLD dosimeter chips, and the seven-element dosimeter contains 42 chips. (See Figure 1. This is actually a picture of the new eight-element dosimeter; the sevenelement dosimeter is identical except that it has no 1-mil shield.)

It is desirable to have a compact unit that is easy to handle. A small size is also desirable to minimize the effect of a radiation field that varies with position. The final version of the dosimeter is no larger than a pocket calculator. Because most beta dosimetry is performed in fields of mixed gamma and beta radiation, it was considered important to be able to derive separate dose values for gammas and betas. This requirement is met through the attenuation of the various shields.

HOURE 1. PNL Eight-Element Dosimeter

DOSIMETER SHIELD CHARACTERISTICS

All of the shields used in the multi-element dosimeter are made of aluminum (see Figure 2). In the case of the thinnest shield, 2×10^{-6} in., the aluminum is deposited on a mylar film. The other six shields in the sevenelement dosimeter are square sheets of aluminum measuring 1.91 cm (3/4 in.) on They have thicknesses of 0.013 cm (0.005 in.), 0.025 cm (0.010 in.), a side. 0.051 cm (0.020 in.), 0.081 cm (0.032 in.), 0.163 cm (0.064 in.), and 0.318 cm (0.125 in.), respectively. (The four-element dosimeter used only the 0.051-cm, 0.081-cm, and the 0.318-cm shields.) The mass thickness can be obtained by multiplying by the density of aluminum, 2.7 x 10^3 mg/cm³. The mass thicknesses of the shields range from 0.013 mg/cm² to 860 mg/cm². This information can be applied to the appropriate range-energy curve (Figure 3) (Evans 1955) to determine the attenuation of the various shields. For example, beta particles with an energy of 1.9 MeV or less will be stopped by the thickest shield, whereas betas with energies greater than 180 keV will penetrate the 0.013-cm thick shield. Although not shown on the curve, the aluminized mylar film will stop only those beta particles with energies less than 3 keV. None of the shields will significantly affect the penetration of gamma photons with energies greater than 40 keV.

The response of TLDs shielded as described above are shown in Figures 4 and 5 (Endres, Scherpelz and Roberson 1982). In these figures, TLD responses are presented for seven-element dosimeters exposed to different sources of beta and photon radiation. The TLD response is listed in units of nanocoulombs (nc), corresponding to the light output from a TLD reader used to analyze exposed TLDs. Since the sources had differing intensities, the TLD responses in nc were divided by the dose delivered to the dosimeter (specifically the dose to the mylar-covered TLDs), producing normalized responses in units of nc/rad. These TLD responses for each dosimeter element were plotted against the thickness of the aluminum shield covering the TLDs. These empirical results seem to agree well with the results of the beta range-energy curve, with TLD response decreasing as a function of shield thickness. Nearly all the beta particles emitted by 90 Sr/ 90 Y (maximum energy 2.3 MeV) are stopped by the thickest filter.

FIGURE 2. PNL Eight-Element Dosimeter Shields

In Figure 4, natural uranium beta particles have an E_{max} similar to 90 Sr/ 90 Y, but the simultaneous emission of low energy photons increases the dose to the TLD behind the thickest shield. The 106 Ru/ 106 Rh source (E_{max} , 3.5 MeV) irradiated the TLDs behind the thickest shield, but the two low energy beta sources. 85 Kr and 147 Pm, failed to irradiate the TLDs behind the 0.051-cm shield. Finally, the beta particles from the 137 Cs/ 137m Ba source were stopped by the material encapsulating the source; the only TLD exposure was a result of the 662 keV gamma photons.

The PNL multi-element TLD dosimeters allow the user to make a correction for beta energy when converting the TLD data to dose values. Other beta dosimeters, including one type that was recently compared to the PNL multielement dosimeter in a test at TMI-2, do not provide beta energy correction factors. The importance of making an energy correction is illustrated by Figures 6 and 7. Each graph compares two sets of dosimeters exposed to beta radiation at the same location. The ratios of indicated beta dose rates are plotted on the vertical axes, with logarithmic scales. The horizontal axes of

these figures are used for presenting calibration factors, the values used to convert dosimeter response to dose. The calibration factors for the PNL dosimeters vary with energy, and in these studies this factor ranged from 0.35 to 0.99 rad/nc. Because the dosimeters from Vendor 2 rely on a single calibration factor, their dose determinations will be dependent on the source of calibration. If these dosimeters were calibrated with ⁹⁰Sr, a popular calibration source, the indicated dose could underestimate, by as much as a factor of 5, the dose as determined by PNL dosimeters. Because TLDs are known to have an energy-dependent response to beta radiation, PNL's TLD dosimeter results are expected to be more accurate than dosimeters using a fixed calibration factor.

CHARACTERISTICS AND QA PROCEDURES FOR THE TLDS

The TLDs used in the multi-element beta dosimeter are 0.318 cm by 0.318 cm by 0.089 cm (1/8 in. by 1/8 in. by 0.035 in.) ⁷LiF ribbons (chips) with a mass of about 25 mg. They are available from the Harshaw Chemical Company as TLD-700s. The energy absorption characteristics of these TLDs to beta and gamma radiation resembles that of tissue. Lithium fluoride has an effective atomic number for photoelectric absorption of 8.14, compared with 7.42 for tissue and 7.64 for air. These high sensitivity ribbons are optically transparent, mechanically rugged, and conveniently handled.

When crystalline LiF is exposed to ionizing radiation at room temperature, electrons in the valence band are raised to the conduction bands. Imperfections in the LiF crystal lattice produced by dopants can trap the free electrons. Heating the LiF gives the electrons the additional energy that they need to escape the traps and return to the valence band. As the electrons return to a lower energy level, they emit visible light (3500-6000 Å). The amount of light emitted is proportional to the number of trapped electrons and is therefore proportional to the radiation dose.

The TLD-700 dosimeters are typically made in batches of thousands from the same batch of TLD powder. The manufacturer visually examines a representative statistical fraction of every batch for apparent defects and checks for thermoluminescent response at an exposure of 1 roentgen using a 60 Co source. The resulting TL response data are analyzed by a computer code which provides mean sensitivity and standard deviation data. These data are expressed as

percentage of the mean and stored by batch number for future reference. In a batch of thousands the typical measured standard deviation in sensitivity is in the range of 2% to 5% of the mean. Batch to batch means vary by less than 5%.

Batches of TLD material used in multi-element dosimeters receive additional screening at the PNL TLD Laboratory after receipt from the manufacturer. In the PNL screening, samples of 200 or more TLDs randomly selected from each new batch are annealed along with samples of 20-25 chips from an original reference set of TLD material and 20-25 chips from the set used in special studies. The chips are spread in vicor dishes and placed in a 400°C furnace under a nitrogen atmosphere for 1 hour, then transferred to a 100°C oven. After 2 hours, TLDs are placed in a low-background storage cave, where they are held for at least 24 hours. All transfers of heated chips are performed under dim light to avoid ultraviolet sensitization of the LiF.

After annealing, the samples are loaded into cardboard holders and irradiated with 250 mR gamma from a ¹³⁷Cs calibration source (off-phantom). A hot gas reader is normally used to compare light outputs. If the laboratory planchet reader is used, sample sizes are reduced. Sample means and standard deviations are calculated for each group. The irradiation/readout process is repeated twice to simulate the effects of reader annealing.

Batches are accepted if the sample mean falls within 5% of both reference sample means and the sample standard deviation is less than 10%. When the mean or standard deviation does not fall within acceptable limits, the batch sample and reference samples are reannealed and rescreened; the laboratory anneal will often stabilize chip responses sufficiently for samples to pass a second screening. If a sample is accepted after a second anneal and screening, the entire batch is annealed before use.

The LiF TLDs have a response that is a well-defined function of dose over the range of 10 mrad to 100,000 rad. When PNL's standard quality control procedures are observed, the TLD-700s can measure doses as low as 10 mrad with a standard deviation of less than 10%; higher doses can be measured with standard deviations as low as 2%. If several TLDs are used, doses as low as a few mrad can be measured by the TLD-700, but with standard deviations greater than 10%.

CALIBRATION AND MEASUREMENT

TLD READER SYSTEM

The instruments used to measure the energy absorbed by the TLDs in the multi-element dosimeter consist of a Harshaw Model 2000-A thermoluminescence analyzer and a Harshaw Model 2080 picoprocessor (see Figure 8). The thermoluminescence analyzer provides a means of heating the TLDs at a constant rate and uses a photomultiplier tube for measuring the amount of light produced (see Figure 9). The amount of light striking the photo-cathode of the photomultiplier tube is proportional to the energy absorbed by the TLDs.

The picoprocessor, or microprocessor-based picoammeter, allows for CRT presentation and storage of digitized glow curves. A glow curve is a plot of light output versus temperature for a TLD. A typical glow curve is evident on the video screen in Figure 8. Figure 10 presents a detailed representation of a glow curve for a TLD-700 read out in the PNL TLD Laboratory. An integration of the area under the glow curve represents the total light output of the TLD. This is the method used to analyze the TLDs from the PNL multi-element dosimeters. From the total light output, the dose to the TLD can be derived.

It is not necessary to use the new picoprocessor described above for glow curve analysis. Any good TLD reader with an x-y plotter is adequate. Calibration of the Model 2000-A thermoluminescence analyzer is checked through the use of a built-in 14 Carbon-activated sodium iodide (T1) light source. The Model 2080 picoprocessor has an internal, electronic calibration source and the calibration can be checked from the keyboard. The complete system is checked with a set of reference TLD chips. These TLDs are irradiated with a gamma ray source of known strength such that a wide exposure range is obtained. The readout of the prepared standards gives a calibration curve in exposure versus charge.

FIGURE 8. Harshaw Thermoluminescence Analyzer and Picoprocessor

FIGURE 9. Physical Layout of Thermoluminescence Analyzer

CIULTI-ELEMENT DOSIMETER CALIBRATION

The multi-element beta dosimeters were calibrated by exposing them to known radiation sources at the PNL Calibrations Laboratory. The beta sources used in these calibrations and the maximum energies of the emitted betas are presented in Table 1. The responses of the dosimeters to these calibration sources are presented in Figure 4.

	TABLE 1.	Beta	Calibration	Sources
--	----------	------	-------------	---------

	Maximum Beta
Nuclide	Energy (MeV)
¹⁴⁷ Pm	0.23
⁸⁵ Kr	0.62
²⁰⁴ T1	0.76
90Sr/ 90 Y	2.3
¹⁰⁶ Ru/ ¹⁰⁶ Rh	3.5

The dosimeters were also exposed to calibrated sources of x rays with energies ranging from 15 to 78 keV, and to a calibrated 137 Cs/ 137m Ba source emitting 662-keV gammas. These measurements characterized the response of the dosimeters to photons. The responses of seven element dosimeters to these photon sources are presented in Figure 5. These studies demonstrated that the attenuation of photons is dependent on shield thickness if the energies are less than about 40 keV, but for photons with higher energies, the TLD response is fairly uniform for all elements. This characteristic of the dosimeter allows the use of the element with the thickest aluniinum filter to be used as an indicator of camma dose. The beta calibration studies summarized in Figure 4 show that the element behind the 0.318-cm Al filter is very nearly insensitive to betas. A calibration factor for gammas was thus determined from the irradiation by 137 Cs/137mBa to be 0.204 rad/nc. This value can be multiplied by the response of the 0.318-cni Al-filtered element of any exposed dosimeter to determine the gamma dose. The TLD response of this element can also be subtracted from the TLD response of all other elements in an exposed dosimeter to obtain the beta components of the element responses.

The data from these calibration studies were used to derive calibration data used in determining the beta doses from field-exposed dosimeters. For each dosimeter exposed to a calibrated beta source, a beta "Calibration Factor" (CF) was determined by subtracting the gamma component (the reading of the element covered by the 0.318-cm Al shield) from the TLD response of the mylarcovered shield, and dividing this value (in nanocoulombs) into the beta dose (in rads) absorbed by the mylar-covered TLDs during the calibration measure-The beta dose delivered by the calibration source is defined as the ment. dose to tissue at a depth of 7 mg/cm². This factor could then be used to convert the responses of other dosimeters to a 7 mg/cm² dose, as long as the dosimeters were exposed to a field of betas with the same energy distribution as the beta calibration source. For each of the five elements with aluminum shields between 0.013 and 0.163 cm thick, the ratio of the element's beta response to the mylar-covered element's beta response was found for each calibration measurement. This ratio was a function of the calibration source's energy distribution: high beta energies resulted in high values of these ratios.

This data was plotted in Figure 11 for the most useful beta calibration measurements for each element. The Calibration Factor is plotted on the vertical scale and the CF value for each beta calibration source is identified. The element ratios are plotted on the horizontal scale. The points on the graph are the observed values for each of the element in each of the irradia-tions (the error associated with each point is less than 5%), and the lines are linear equations fitted to the observed values.

DATA ANALYSIS METHOD

When exposed dosimeters are analyzed to determine the doses they were exposed to, the first task is to disassemble the dosimeters and extract the As the TLDs are taken from the dosimeters, they are read out in the TLDs. thermoluminescence analyzer and picoprocessor. This analysis results in TLD responses in units of nanocoulombs of light output. The TLD responses are then used as raw data in a computer program which converts the TLD responses to absorbed doses. This program first finds the gamma component of each dose, then subtracts the gamma response from each element response, and determines the ratios of Al-covered elements to the mylar-covered element. It uses these ratios, which are an indication of the beta energy spectrum, to select the appropriate calibration factor. This calibration factor is then multiplied by the mylar-covered element's response to determine the beta dose. This procedure will be illustrated by a sample dosimeter analysis.

The input data for the computer program consists of the TLD responses for all chips in the dosimeter. The program first looks at the TLD responses in sets of three for each element. Ideally these three chips should all have nearly identical readings. The program finds the mean and standard deviation for each set of three, and if a standard deviation is greater than 5%, it checks to see if two of the readings are close to each other; if so it rejects the "flier," and uses the mean value of the other two. If all three readings are quite dissimilar, it rejects all three if the element is one of 4, 5, or 6 (of the seven-element dosimeter); otherwise it accepts all three. This system is necessary to preserve data that is necessary for the analysis, but reject suspicious data that is unessential and may confuse the results.

Table 2 presents the "raw" data from a four-element dosimeter for an example data analysis to illustrate the operation of the computer code. In this example only the mean values of the three TLD readings for each element are recorded.

Shield	Gamma + Beta (nc)	Beta (nc)
Mylar	543.0	200.6
0.051 cm Al	406.9	64.4
0.081 cm A1	366.0	23.6
0.318 cm Al	342.5	0

TABLE 2.	Raw	Data	for	Exposed	Four-Element	Dosimeter
----------	-----	------	-----	---------	--------------	-----------

The reading for the TLDs under the thickest filter was used to indicate the gamma dose, and this value was subtracted from the other element readings to get responses due to betas alone. Ratios were then determined for the elements under each of the two thinnest aluminum shields to the mylar-covered element, and these two ratios indicated the energy distribution of the beta radiation incident on the dosimeter. These ratios were used to select the appropriate energy-dependent beta calibration factor for each shield from the set of calibration factors determined by the calibration irradiations. The OF values were determined by applying the fitted equations shown in Figure 11. These equations are listed in Table 3.

The average of the two calibration factors found by equations for #4 and #5 was then multiplied by the mylar-covered element's beta response to determine the beta dose. The worksheet for these calculations based on the raw data of Table 2, is presented in Table 4.

Element	Shield Thickness (cm)	Equation
2	0.013	CF = -1.0032 * R + 0.9943
3	0.025	CF = -1.0960 * R + 0.9471
4	0.051	CF = -0.7438 * R + 0.6028
5	0.081	CF = -1.1420 * R + 0.5885
6	0.163	CF = -6.1597 * R + 0.6215

TABLE 3.	Equations for Converting Element Ratios t	0
	Calibration Factors	

TABLE 4.	Analysis	of	Exposed	Four-Element	Dosimeter
----------	----------	----	---------	--------------	-----------

		Beta Calibra	tion Factor
Shield		Element	Averaae
(cm)	<u>Ratio</u>	<u>(rad/nc)</u>	(rad/nc)
0.051 Al	0.321	0.364	0 400
0.081 A1	0.118	0.454	0.409
Beta Dose = Gamma Dose =	(201 nc) * (342 nc) *	(0.409 rad/nc) = (0.204 rad/nc) =	82.4 rad 69.8 rad

The final two lines of Table 4 show the conversion of TLD response to dose. The beta dose calculation uses the beta component of the mylar-element response, with the calibration factor selected in Table 4. The gamma dose calculation uses the TLD response from the element shielded by the thickest aluminum shield, with a gamma calibration factor determined by the calibration irradiations.

A similar method of using beta-component responses to calculate ratios of aluminum-shielded elements to mylar-shielded elements was used in the analysis of data from seven-element dosimeters. A set of raw data from a seven-element dosimeter is presented in Table 5.

<u>H</u> ement	Shield	Gamma + Beta (nc)	Beta (nc)	Hement Ratio	Cal ibration Factor
1	Mylar	240.3	79.8	1.0	-
2	0.013 cm Al	191.5	31.0	0.3887	0.6044
3	0.025 cm A1	185.5	25.0	0.3132	0.6038
4	0.051 cm Al	177.0	16.5	0.2071	(0.4488)
5	0.081 cm Al	163.1	2.6	0.0322	(0.5517)
6	0.163 cm Al	158.7	0	0	(0.6215)
7	0.318 cm Al	160.5	0	0	-

TABLE 5 Data for Exposed Seven-Element Dosimeter

The gamma dose for this example was found by multiplying the TLD response of element 7 by the gamma calibration factor:

$$(160.5 \text{ nc})$$
 * $(0.204 \text{ rad/nc}) = 32.7 \text{ rad}.$

To evaluate the beta dose, a calibration factor could have been found by averaging the CF values for elements 2-6: 0.566 rad/nc. However, it would be poor practice to include element 6 in the beta calibration factor determination, since no betas penetrated the filter--the TLD response was zero. Therefore limits were set on the ratios of each element: if the ratios were below the lower limits, the element was disregarded in the beta CF determination. If the ratio was above the upper limit, the CF for a 90 Sr/ 90 Y spectrum was assigned to that element. The reasoning for setting the lower limit was to avoid using the results of thick-filtered elements in a low-energy field where these elements would be insensitive. From the results of the calibration studies, the lower ratio limits were set for elements 4, 5, and 6 as the ratio values corresponding to the uranium spectrum. No lower limits were set for the two thin-aluminum-filtered elements (2 and 3), since these are the most sensitive for the low-energy fields. Upper limits were set for all elements, 2-6, corresponding to ratios for a 90 Sr/ 90 Y beta field. The linearity of the ratio-CF equations are suspect for beta energies above this limit, so the conservative assumption was made to assign the 90 Sr/90Y CF value to any element response with a ratio higher than this limit ratio value. The average CF for a dosimeter exposure was therefore found as the average of the CF values for all elements with ratios above the lower limit. For this example, the average of CF values for elements 2 and 3 was 0.6041 rad/nc. Thus the beta dose was calculated as:

(79.8 nc) * (0.6041 rad/nc) = 48.2 rad.

The discussion of limits to the ratio values illustrates the advantage of the seven-element dosimeter over the four-element dosinieter. In the fourelement dosimeter a lower limit could not be set for the two important aluminum-covered elements, since the two thinnest filters were not available. (In Figure 11 the equations for these two elements were shown as dashed lines above the uranium CF, showing that these segments were used for the fourelement dosimeter analysis, but not for the seven-element dosimeter analysis.) Thus in low-energy beta fields we had to rely on the ratios from the 0.051-cm and 0.081-cm Al filters, even though the 0.013-cm and 0.025-cm filtered elements would have given more reliable CF values.

A computer code, RATIO7, has been written and used at PNL for the dosimeter data analysis. This code is listed in Appendix **I**_

Error Analysis

The major components of the error in a dosimeter measurement comes from uncertainties in:

TLD chips

TLD reader

Calibration measurement and curve fitting

Dosimeter placement and irradiation.

A thorough analysis of the measurement errors would involve isolating each individual factor affecting each component identified above, determining the variability of each factor, and combining all of these factors into one mathematical expression. A similar study was performed for the Hanford Multipurpose Dosimeter, and this study was recently published (Fi81). Since this type of error analysis is beyond the scope of this study, the errors in each dosimeter measurement were empirically approximated based on the results of each dosimeter's analysis.

The basic formula for converting a dosimeter response to measured dose is:

$$D = CF * TLD$$

where D is the dose, CF is the calibration factor, and TLD is the TLD response of the appropriate element (for gammas, #7; for betas, #1 with gamma response subtracted off). The error analysis for these dosimeters consists of evaluating the observed variation for each of the two components, CF and TLD, and combining these into a total error for the measurement. The variation in CF

for betas is found by evaluating the standard deviation of the individual element CF values that are averaged to find the CF value used to determine the beta dose. The standard deviations of the three TLD counts for elements 1 and 7 were also evaluated and combined for the beta error:

$$\sigma_{\text{TLD}} = \sqrt{\sigma_{\text{TLD-1}}^2 + \sigma_{\text{TLD-2}}^2}$$

These two standard deviations were then combined to get the total beta error:

$$\sigma_{\rm D} = D \sqrt{\frac{\sigma_{\rm CF}^2}{{\rm CF}^2} + \frac{\sigma_{\rm TLD}^2}{{\rm TLD}^2}}$$

The error for the gamma dose was found in a similar manner, using the same equation for σ_D . However, since a fixed value was used for CF, the standard deviation for CF was fixed at 0.093*CF, based on uncertainties in the calibration measurements. σ_{TLD} was simpler for the gamma dose than for the beta dose, simply the standard deviation of the three TLD chips in element 7, the element used for the gamma dose determination.

COMPILATION OF DATA

DESCRIPTION OF EXPERIMENTS

Multi-element beta dosimeters have been exposed in three sets in the containment building of the Three Mile Island Unit II reactor. The three sets were used in the following experiments:

- pre-gross decontamination experiment
- post-gross decontamination experiment
- pre-flushing TLD tree.

In the pre-gross decontamination experiment, dosimeters were exposed between Deceniber 3 and Deceniber 15, 1981. Ten dosimeters were used in the vicinity of the dome monitor and on the elevator shaft roof, thirteen were placed on the 305 ft elevation, and 15 were placed on the 347 ft and 367 ft elevations. These dosimeters were returned to PNL and read out in the TLD readers in February 1982. The computer run used to analyze the data is presented in Appendix II. A summary of the dosimeter placements and the resulting dose rates are presented in Figures 12a, 12b, and 12c; and in Tables 6a, 6b, and 6c.

Tables 6a through 9 list four dose rates for each dosimeter location: the beta dose rates for the front and back of the dosimeter and the gamma dose rates for the front and back. With each dose rate is listed the associated error, expressed as one standard deviation. In some dosimeter analyses this error was larger than the evaluated dose rate itself, and if this error were subtracted from the evaluated dose rate, the value would be less than zero. Such a value would, of course, be nonsense. Any dose rate of zero (or smaller) should be interpreted as being lower than the dosimeter's minimum level of detection.

FIGURE 12a. Pre-Gross Decontamination Experiment Dosimeter Placement and Results - Dome Monitor and Elevator Shaft Roof

FIGURE 12b. Pre-Gross Decontaniination Experiment Dosimeter Placement and Results - 305 ft Elevation

FIGURE 12c. Pre-Gross Decontamination Experiment Dosimeter Placement and Results - 347 and 367 ft Elevation

		TLD Location ##		Date and Time		Exposure	Beta Dose Rate		Gamma Dose Rate	
Type <u>Surface</u>	TLD #		Location Description	Ex In	posure Out	Time (hr)	Front (mrad/hr)	Back (mrad/hr)	Front (mrad/hr)	Back (mrad/hr)
207 207	1	H8-1	Horizontal surface, top of monitor	12/3/81 12:00	12/15/81 12:00	288	37.0 ± 20.1	131 t 125	48.8 ± 4.6	68.2 • 12.1
tica] face	2	H8-2	Vertical surface, side of monitor	12/3/81 12:00	12/15/81 12:00	288	113 ± 92	1820 ± 440	552 ± 52	606 ± 57
so Dog Ho	3	H8-3	Vertical surface, side of monitor	12/3/81 1 2:00	12/15/81 12:00	288	827 ± 57	0	156 ± 16	167 ± 16
r;zont e mont	4	H8-4	Vertical surface, side of monitor	12/3/81 12:00	12/15/81 12:00	288	1400 ± 89	0	113 ± 11	138 ± 14
itor	5	H8-5	Vertical surface, side of monitor	12/3/81 12:00	12/15/81 12:00	288	516 t 268	33.0 ± 22.9	138 t 13	155 ± 15
Elerator Shaft Roó [for izon al sur fae)	5	H8-6	Facing stairs and in front of hatch, TLO on immediate right	12/3/81 12:00	12/15/81 12:00	288	333 ± 83	3670 ± 79	391 ± 39	417 ± 39
	7	H8-7	Facing stairs and in front of TLO on immediate left	12/3/81 12:00	12/15/81 12:00	288	191 ± 72	3070 ± 250	398 ± 40	428 ± 41
	8	H8-8	Facing stairs and back to stairs, TLD on left corner of roof	12/3/81 12:00	12/15/81 12:00	288	110 ± 23	4020 t 280	379 ± 36	440 ± 41
	9	H8-9	Facing monitor and back to stairs, TLD on right corner of roof	12/3/81 12:00	12/15/81 12:00	288	69.9k33.5	11700 ± 3790	661 ± 63	779 ± 74
Control	10	H8-10	Carried to roof and brought out	12/3/81 12:00	12/3/81 13:00	1	45.9 ± 20.2	49.0 ± 33.3	221 ± 21	219 ± 21

Pre-Gross Decontamination Experiment Dosimeter Placement and Results -Dome Monitor and Elevator Shaft Roof TABLE 6a.

Notes: 1. HPR-214

Horizontal and vertical measurements - front side of TLO system against monitor surface.

Elevator Roof Measurement Horizontal measurements • back side of TLO system against roof surface.

<u>TABLE 6h</u> .	Pre-Gross	Decontamination	Experiment	Dosimeter	Placement	and	Results	pe
	305 Foot Elevation							

			Date and Time	Exposure Time (hr)	Beta Dose Rate		Gamma Dose Rate			
TLD 	Location #	Location Description	Exposure		Front (mrad/hr)	Back (mrad/hr)	Front (mrad/hr)	Back (mrad/hr)		
11	13	Vertical surface, taped to liner ^4 feet above floor, NE area Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	0	0	625 • 62	666 ± 63		
12	H7	Horizontal surface, taped to floor, NE area of Rx Bldg., SE area under CF-T-1A	12/9/81 12/15/81 1427 1838	148.2	161 ± 64	923 ± 575	428 ± 41	467 ± 45		
13	B4	Vertical surface, taped to underside of junction box, NE area Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	476 ± 50	135 ± 16	158 ± 15	160 ± 15		
14	V9	Vertical surface, taped to D-ring wall ∿4 feet above floor, SE area Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	247 ± 104	38.5 ± 81.3	573 ± 55	555 ± 54		
15	H6	Horizontal surface, taped to West area of hatch cover, SE area Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	7220 ± 481	14900 ± 10000	2180 ± 210	2640 ± 250		
16	V8	Vertifical surface, taped to front side of aircooler B ∿4 feet above floor, SE area Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	113 ± 40	205 ± 100	579 ± 54	575 ± 57		
18	H5	Horizontal surface, taped to floor, SV area of Rx Bldg., NE area under CP-T-1B	12/9/81 12/15/81 1427 1838	148.2	635 ± 283	2750 ± 1980	937 ± 110	900 ± 84		
27	67W	Vertical surface, taped to O-ring wall ∿4 feet above floor, NW area Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	51.4 ± 39.5	0	289 ± 27	269 ± 26		
26	66	Vertical surface, taped to liner ∿4 feet above floor, NW area Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	1370 ± 940	267 ± 54	285 ± 28	305 ± 31		
25	63	Vertical surface, taped to D-ring wall ∿4 feet above floor, W area of Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	176 ± 192	556 ± 319	1450 ± 140	1330 ± 130		
23	H3	Horizontal surface, taped to floor, West area Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	0	8010 ± 610	5180 ± 480	5320 ± 520		
19	B3	Vertical surface, taped to underside of junction box ${\bf v}{f 8}$ feet off floor	12/9/81 12/15/81 1427 1838	148.2	679 ± 52	598 ± 49	0	388 ± 37		
21	50F	Horizontal surface, taped to floor, SW area of Rx Bldg.	12/9/81 12/15/81 1427 1838	148.2	305 ± 91	5010 ± 920	413 ± 42	410 ± 39		
			Date_and Time		Exposure	Beta D	ose Rate	Gamma Dose Rate		
----	---------------	---	-----------------	------------------	----------	--------------------	-------------------	-----------------	-------------------	--
#	Location #	Location Description		posure Out	(hr)	Front (mand/ba)	Back	Front	Back	
29	30	Vertical surface, taped to liner ∿4 feet above floor by hatch cover, NE area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	74.1 ± 13.9	29.0 ± 14.0	94.0 ± 9.5	88.7 ± 8.3	
30	31W	Vertical surface, taped to D-ring wall, ∿4 feet above floor, NE area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	220 ± 8	92.9 ± 9.9	95.7 ± 9.2	93.7 ± 9.0	
36	V3	Vertical surface, taped to liner behind enclosed stairwell 색 feet above floor	12/9/81 1507	12/15/81 1838	147.52	90.9 ± 32.7	16.5 ± 9.6	68.1 ± 7.0	59.8 ± 5.6	
39	V4	Vertical surface, taped to outside enclosed stairwell wall 💜 feet above floor	12/9/81 1507	12/15/81 1838	147.52	50.0 ± 19.4	29.9 ± 7.7	90.1 ± 9.1	86.1 ± 8.5	
34	36W	Vertical surface, taped to D-ring wall ∿4 feet above floor, SE area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	129 ± 25	39.3 ± 17.5	121 ± 12	122 ± 11	
37	H10	Horizontal surface, taped to floor near SW corner of hatchcover, South area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	227 ± 42	3860 ± 600	243 ± 24	267 ± 27	
43	50W	Vertical surface, taped to Esst side of head stand, SV area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	398 ± 32	153 ± 28	134 ± 14	124 ± 12	
44	52	Horizontal surface, taped to top of head stand, SV area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	352 ± 49	1690 ± 78	151 ± 15	146 ± 14	
51	V2	Vertical surface, taped to D-ring wall ∿4 feet above floor, West area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	143 ± 26	32.9 ± 37.2	126 ± 12	124 ± 12	
50	B1	Horizontal surface, placed on floor below junction box, West area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	630 ± 95	11200 ± 470	461 ± 44	456 ± 47	
46	H9	Horizontal surface, taped to floor ^4 feet south of open stairwell, West area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	528 ± 319	6290 ± 340	282 ± 28	267 ± 26	
48	56	Vertical surface, taped to liner ∿4 feet above floor, West area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	80.2 ± 17.4	38.9 ± 27.3	85.6 ± 8.1	81.1 ± 8.1	
49	63	Horizontal surface, West axis of in core instrumentation area	12/9/81 1507	12/15/81 1838	147.52	46400±14800	248000±21000	7860 ± 1280	6090 ± 640	
40	13	Horizontal surface, 367 foot elevation, top D-ring wall, East area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	353 ± 34	7950 ± 810	347 ± 32	375 ± 36	
41	V11	Vertical surface, 367 foot elevation, taped to inside D-ring wall, East area Rx Bldg.	12/9/81 1507	12/15/81 1838	147.52	182 ± 136	525 ± 123	766 ± 72	743 ± 70	

$\frac{\text{TABLE 6c.}}{347 \text{ and } 367 \text{ Foot Elevations}} \text{ Pre-Gross Decontamination Experiment Dosimeter Placement and Results} -$

The post-gross decontamination experiment was performed between March 25 and April 22, 1982. Fourteen dosimeters were exposed on the 305 ft elevation, seventeen were exposed on the 347 ft elevation, and two were exposed on the 367 ft level. The dosimeters were read out in the PNL TLD Laboratory in May 1982. The computer runs analyzing these dosimeters are presented in Appendix II, and the dosimeter placements and evaluated dose rates are presented in Figures 13a and 13b and in Tables 7a and 7b.

In the pre-flushing TLU tree experiment, four multi-element dosimeters were placed on each of four TLD trees. These trees were lowered from the 305 ft elevation down into the reactor basement to measure radiation levels before flushing of the 282 ft elevation walls. Each tree also contained dosimeters provided by Panasonic and Harshaw, providing for rough comparisons between the different types of dosimeters. The dosimeters were exposed on June 22. 1982 for about three hours. The multi-element dosimeters were returned to PNL and the TLDs read out in July 1982. The computer analysis is listed in Appendix II. Figure 14 shows the placement of the TLD trees from the viewpoint of the 305 ft level and Table 8 describes the placement of the Table 9 presents the dose rates determined from the PNL multi-element trees. dosimeters and compares them to the doses determined by the Panasonic and Harshaw dosimeters. Comparisons of the doses determined by the different types of dosimeters are presented in Figures 6 and 7.

FIGURE 13a. Post Gross Decontamination Experiment Dosimeter Placement and Results - 305 Foot Elevation

FIGURE 13b. Post Gross Decontamination Experiment Dosimeter Placement and Results - 347 and 367 Foot Elevations

TABLE 7a.	Post Gross Decontamination	Experiment	Dosimeter	Placement	and	Results	-
	305 Foot Elevation						

			Date a	and Time	Exposure	Beta D	ose Rate	Gamma D	ose Rate
TLD #	Location #	Location Description	E>	cposure Out	Time (hr)	Front (mrad/hr)	Back (mrad/hr)_	Front (mrad/hr)	Back (mrad/hr)
	13	Vertical surface, taped to liner ∿4 feet above floor, NE area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	15.2 ± 7.0	7.69 ± 5.46	202 ± 20	203 ± 19
2	H7	Horizontal surface, taped to floor, NE area of Rx Bldg., SE area under CF-T-1A	3/25/82 1500	4/22/82 1057	668	295 ± 192	158 ± 120	228 ± 23	241 ± 24
3	B4	Horizontal surface, placed on top of junction box, NE area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	6520 ± 1340	35.6 ± 36.9	375 ± 35	338 ± 32
4	V9	Vertical surface, taped to D-ring wall ∿4 feet above floor, SE area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	139 ± 66	0	354 ± 35	351 ± 34
5	H6	Horizontal surface, taped to west area of hatch cover, SE area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	0	699 ± 195	2930 ± 280	2760 ± 270
6	V8	Vertical surface, taped to front side of aircooler B∿4 feet above floor, SE area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	158 ± 107	262 ± 235	332 ± 32	347 ± 32
58	34F	Horizontal surface, taped to floor, south area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	24.8 ± 37.7	136 ± 27	279 ± 27	273 ± 26
8	67W	Vertical surface, taped to O-ring wall ∿4 feet above floor, NV area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	111 ± 73	45.1 ± 31.1	155 ± 15	150 ± 15
61	63	Vertical surface, taped to D-ring wall ∿4 feet above floor, W area Rx Eldg.	3/25/82 1500	4/22/82 1057	668	0	193 ± 134	801 ± 77	717 ± 70
63	V5	Vertical surface, taped to south equipment hatch wall ∿4 feet above floor	3/25/82 1500	4/22/82 1057	668	203 ± 22	315 ± 67	119 ± 12	110 ± 11
7	H3	Horizontal surface, taped to floor, West area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	230 ± 188	4430 ± 2090	535 ± 52	523 ± 54
64	55P	Vertical surface, taped to D-ring wall ∿4 feet above floor, S₩ area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	45.0 ± 15.7	16.7 ± 28.3	195 ± 19	193 ± 20
65	83	Vertical surface, taped to underside of junction box ${\bf V}{f 8}$ feet off floor	3/25/82 1500	4/22/82 1057	668	321 ± 33	231 ± 32	262 ± 27	275 ± 26
66	50F	Horizontal surface, taped to floor, SW area Rx Bldg.	3/25/82 1500	4/22/82 1057	668	73.7 ± 33.8	529 ± 67	275 ± 26	252 ± 24

			Date ar	and Time Exposure		Beta D	ose Rate	Gamma Dose Rate	
TLD #	Location #	Location Description	<u> </u>	osure <u>Ou</u> t	Time (hr)	Front (mrad/hr)	Back (mrad/hr)	Front (mrad/hr)	Back (mrad/hr) 59.8 ± 6.0 61.3 ± 6.1 32.5 ± 3.1 43.0 ± 4.0 50.0 ± 4.7 63.5 ± 6.1 52.6 ± 5.1 88.3 ± 8.3 215 ± 22 109 ± 10 331 ± 33 70.6 ± 7.1 70.4 ± 6.9 77.3 ± 7.3 97.6 ± 9.3
13	30	Vertical surface, taped to liner 14 feet	3/26/82	4/22/82	645.5	23.4 ± 7.2	5.37 ± 4.01	62.4 ± 6.1	59.8 ± 6.0
14	31W	Vertical surface, taped to D-ring wall	3/26/82	4/22/82	645.5	166 ± 14	22.3 ± 11.6	68.1 ± 6.6	61.3 ± 6.1
15	32	Vertical surface, taped to liner 144 feet	3/26/82	4/22/82	645.5	5.28 ± 2.03	27.3 ± 6.5	34.1 ± 3.4	32.5 ± 3.1
18	34W	Vertical surface, taped to D-ring wall V4 feet above floor. East area Rx Bldg.	3/26/82 1328	4/22/82 1057	645.5	106 ± 12.3	35.8 ± 27.7	50.6 ± 4.8	43.0 ± 4.0
19	V3	Vertical surface, taped to liner behind enclosed stairwell 44 feet above floor	3/26/82 1328	4/22/82 1057	645.5	8.78 ± 1.58	0	47.1 ± 4.6	50.0 ± 4.7
67	V4	Vertical surface, taped to outside enclosed stairwell wall ${\mathcal M}$ feet above floor	3/26/82 1328	4/22/82 1057	645.5	69.2 ± 8.4	45.0 ± 9.7	65.5 ± 6.2	63.5 ± 6.1
12	36W	Vertical surface, taped to D-ring wall ∿4 feet above floor, SE area Rx Bldg.	3/26/82 1328	4/22/82 1057	645.5	17.2 ± 4.7	3.47 ± 2.49	56.5 ± 5.5	52.6 ± 5.1
68	B2	Horizontal surface, placed on top junction box, SE area Rx Bldg.	3/26/82 1328	4/22/82 1057	645.5	61.3 ± 13.7	328 ± 9.9	94.4 ± 8.8	88.3 ± 8.3
70	H10	Horizontal surface, taped to floor near SV corner of hatch cover, South area Rx Bldg.	3/26/82	4/22/82	645.5	106 ± 16	1670 ± 980	1/0 ± 16	215 ± 22
73	50W	stand, SW area Rx Bldg.	3/26/82	4/22/82	645.5	128 ± 21	9.01 ± 6.76	108 ± 10	109 ± 10
11	1491	Horizontal surface, taped to floor by D-ring wall, SW area Rx Bidg.	3/26/82	4/22/82	645.5	0	248 ± 199	70 7 + 6 9	331 ± 33
74	52	stand, SV area Rx Bidg.	1328	4/22/82	043.J	101 ± 12	2 20 ± 5 76	/0,/ ± 0.9	70.6 ± 7.1
75	49	above floor, SV area Rx Bldg.	1328	4/22/02	645.5	54.0 ± 11.0	$3,25 \pm 0.70$ $3,17 \pm 8,12$	763 ± 71	70.7 ± 0.5
70 77	V2 81	Verifical surface, taped to D-mig wain V4 feet above floor, West area Rx Bldg. Horizontal surface, placed on top of junction	1328 3/26/82	1057	645 5	26 6 + 86	39.3 + 5.1	109 + 10	97.6 + 9.3
78	на	box, West area Rx Bidg.	1328	1057	645.5	74.4 ± 24.7	783 ± 119	128 ± 13	137 ± 13
80	56	South of open stairwell, West area Rx Bldg.	1328	1057	645.5	26.5 ± 5.1	14.7 ± 4.4	52.0 ± 4.9	50.6 ± 4.9
71	13	above floor, West area Rx Bldg. Horizontal surface 367 foot elevation	1328	1057	645.5	129 ± 35	3020 ± 130	205 ± 20	232 ± 22
72	V11	top D-ring wall, East area Rx Bldg. Vertical surface, 367 foot elevation, taped	1328 3/26/82	1057 4/22/82	645.5	73.6 ± 26.3	331 ± 54	536 ± 50	571 ± 54
		to inside D-ring wall, East area Rx Bldg.	1328	1057					

TABLE 7b. Post Gross Decontamination Experiment Dosimeter Placement and Results - 347 and 367 Foot Elevations

FIGURE 14. Preflushing of the Reactor Building Basement TLD Tree Measurement Locations

TABLE 8. Placement of TLD Trees During Pre-Flushing of the Reactor Building Basement

Tree #	Location Description	Orientation of TLD Tree	Comments
1	TLD tree lowered through penetra- tion 220, behind CF-T-1A and against the east wall of the refueling canal on the 305 foot elevation into the basement.	The front side of the TLD tree was facing toward the east wall of the refueling canal.	There was no problem with the lowering or raising of the TLD tree.
2	TLD tree lowered through the NE section of the basement equipment hatch on the 305 foot elevation basement.	The front side of the TLD tree was facing toward personnel airlock #1.	There was no problem with the lowering or raising of the TLD tree.
3	TLD tree lowered through penetra- tion R-37, west of CF-T-IB and against the "A" D-ring wall on the 305 foot elevation into the basement.	The front side of the TLD tree was facing toward the "A" D-ring wall.	There was a slight problem with the lowering and raising of the TLD tree.
4	TLD tree lowered down the seismic gap by the cable chase area (NW area of Rx [.] Bldg.) on the 305 foot elevation into the basement.	The front side of the TLD tree was facing toward the containment liner.	There was no problem with the lowering or raising of the TLD tree.

				PNL Dos	simeter Dose Rates	S			Dose	ose Rates			
TLD		Eleva-	Exposur	e Dates		Be	eta	Gamr	na	Panas	sonic	Hars	haw
Tree	TLD	tion (ft)	In Date & Time	Out Date & Time	Exposure (hrs)	Front (rad/hr)	Back (rad/hr)	Front (rad/hr)	Back (rad/hr)	Beta (rad/hr)	Gamma (rad/hr)	Beta (rad/hr)	Gamma (rad/hr)
1	85	300	6/22/82 0945	6/22/82 1252	3.12	0.097± 0.142	0.0394 ± 0.563	1.10 ± 0.10	1.04 ± 0.10	0.449	1.058	0.208	0.801
	84	295	6/22/82 0945	6/22/82	3.12	1.41 ± 0.68	3.65 ± 0.69	2.91 ± 0.31	2.93 ± 0.28	1.122	3,205	NA	3.462
	82	290	6/22/82 0945	6/22/82 1252	3.12	57.1 ± 7.7	34.6 ± 3.7	15.2 ± 1.7	14.2 ± 1.4	26,603	15.705	5,256	15.865
	81	285	6/22/82 0945	6/22/82 1252	3.12	57.2 ± 5.2	83.4 ± 4.0	16.2 ± 1.6	15.0 ± 1.7	48.077	16.987	12.885	23,750
2	89	300	6/22/82 1039	6/22/82 1259	2.33	1.27 ± 1.15	1.67 ± 1.18	9.32 ± 0.97	8.81 ± 0.86	1.159	10.730	NA	10.043
	88	295	6/22/82 1039	6/22/82 1259	2.33	6.54 ± 3.77	1.97 ± 2.1	22.0 ± 0.99	22.2 ± 2.1	12.446	24.464	NA	22,919
	87	290	6/22/82 1039	6/22/82 1259	2.33	11.6 ± 5.8	3.48 ± 1.95	46.7 ± 4.5	45.0 ± 4.3	22.318	41.202	NA	38.283
	86	285	6/22/82 1039	6/22/82 1259	2.33	70.2 ± 15.4	29.4 ± 8.0	65.3 ± 6.1	65.6 ± 6.5	NA	85,837	7.125	76.824
3	93	300	6/22/82 0949	6/22/82 1254	3,08	0.341± 0.321	0.637 ± 0.199	5.86 ± 0.62	5.40 ± 0.51	0.390	7.143	NA	6.818
	92	295	6/22/82 0949	6/22/82	3.08	4.25 ± 0.69	3.22 ± 1.26	8.50 ± 0.82	7.99 ± 0.75	5.520	10,390	NA	11.721
	91	290	6/22/82 0949	6/22/82 1254	3.08	429 ± 8.5	22.5 ± 5.0	19.4 ± 1.9	17.9 ± 1.7	61.688	17,857	18.539	21.851
	9 0	285	6/22/82 0949	6/22/82 1254	3.08	22.3 ± 4.9	136 ± 21	13.3 ± 1.2	15.2 ± 1.5	64.935	18.831	6.201	15.877
4	97	300	6/22/82 0951	6/22/82 1256	3.08	0.249± 0.130	0	1.20 ± 0.11	1.24 ± 0.12	0.312	1.461	NA	1.299
	96	295	6/22/82 0951	6/22/82 1256	3.08	1.04 ± 0.25	1.58 ± 0.53	2.73 ± 0.26	2.74 ± 0.27	1.429	2.987	NA	3.052
	95	290	6/22/82 0951	6/22/82 1256	3.08	43.2 ± 2.0	33.7 ± 3.9	8.90 ± 0.85	7.85 ± 0.74	42.208	9.091	13.377	13.020
	94	285	6/22/82 0951	6/22/82 1256	3.08	99.0 ± 8.0	26.2 ± 5.3	18.1 ± 1.7	14.6 ± 1.5	58.442	18.182	33.766	21.948

TABLE 9. Pre-Flushing Experiment TLD Tree - Beta and Gamma Doses from Three Types of Dosimeters

CONCLUSIONS

The PNL multi-element beta dosimeter is a reliable device for determining doses in fields of mixed beta and gamma radiation. The studies that used these dosimeters illustrated the importance of using an energy-dependent calibration factor for beta dose determination: using a fixed calibration factor can result in a poor estimate of the dose. As illustrated by Figure 7, using only the calibration factor for betas from 90 Sr/ 90 Y can result in an underestimate of the dose as large as a factor of 5. The comparisons between the PNL dosimeters and dosimeters supplied by Vendor 2, the PNL dosimeters evaluated higher beta doses than those evaluated by the other dosimeters, indicating that the PNL dosimeters were operating as expected.

In Figure 6, a comparison between the PNL and Vendor 1 dosimeters, there is no well-defined trend as to which type determines a higher or lower dose. The PNL dosimeters measured higher doses than the Vendor 1 dosimeters in roughly half of the comparisons and lower doses in the other comparisons. This result is consistent with the fact that both PNL and Vendor 1 use energydependent calibration factors.

There is one important factor that could contribute to the discrepancy between the PNL, Vendor 2, and Vendor 1 dosimeters in dose evaluation--possible nonuniformities in the beta radiation field being measured. Since the range of betas in air is quite short compared to photons and neutrons, a variation in the concentration of beta emitters on a surface can lead to a similar variation in the intensity of the beta radiation striking nearby dosimeters. Thus two dosimeters placed several inches apart from each other against a contaminated wall could be exposed to different beta doses if the contamination on the wall were not uniform. It is quite likely that this effect occurred in some of the dosimeter comparisons.

The nonuniformity of beta radiation fields could also contribute to a poor dose determination by a multi-element dosimeter. The analysis of our dosimeter assumes that the entire dosimeter is exposed to a constant radiation field. There have been some instances in which **it** is obvious that some elements were exposed to higher dose rates than were other elements. There were dosimeters that showed higher TLD responses in elements that were covered by

38

thick shields than in the mylar-covered element, indicating a nonuniform field. The data analysis for such a dosimeter usually rejected the contribution of such an element, since the ratio to the mylar chip would be outside the allowed range, but this resulted in a loss of potential data. Smaller discrepancies could perhaps not be rejected, but instead would introduce some confusion into the data analysis. The error analysis routine was designed to catch such discrepancies and signal the possibility of a poor dose determination by indicating a large error. An example of an apparently nonuniform beta field can be seen in the results from dosimeter #3, back, in the post-gross decontamination experiment. For this dosimeter, elements 4, 5, and 6 had higher TLD responses than element 1. The evaluated error for this beta dose was larger than the evaluated dose itself.

Another possible error occurs when a significant amount of low energy x-rays are present. The relationship between TLD response and absorber thickness is flat for photons with energies greater than about 40 keV, so that the response of these photons would be correctly subtracted from the element responses to give the beta response. Photons with low energies, however, are weak penetrators of aluminum, and Figures 4 and 5 show that the relative responses of the elements are similar for betas and low-energy x-rays. The presence of these low energy x-rays would therefore be an interference in the dosimeter's dose evaluation. Preliminary studies of radionuclides in the TMI-2 containment building have indicated that three radionuclides, 134 Cs, 137 Cs and 90 Sr (and their radioactive progeny), are responsible for producing most of the dose observed in the building (NRC 1981). During the radioactive decay of these nuclides, the radiation emitted consists almost exclusively of betas and gammas; x rays with energies less than 40 keV make a negligible contribution to the dose (Kocher 1981). Thus, the presence of low energy x-rays did not appear to be a serious problem in the TMI-2 dosimeter exposures.

The presence of a very high-intensity gamma field in along with the betas could be an interference due to poor counting statistics. Since the data analysis depends on subtracting the gamma contribution to the TLD response of each element, a small beta response in the presence of a high gamma response would result in a high error for the beta response. Gamma intensities during the TMI-2 exposures never seemed to be high enough to cause such interference.

Since betas are attenuated by relatively thin absorbers, any material placed between the aluminum shields and the source of betas will attenuate the beta radiation. For use in a contaminated environment such as the TMI-2 containment building, it is necessary to enclose the dosimeters in a plastic bag to avoid contamination of the dosimeter itself. This plastic packaging acts as an additional absorber over the dosimeter. The plastic has the effect of stopping some very low energy betas that otherwise would have produced a response in the dosimeter, and generally reducing the number of betas of all energies that strike the dosimeter. The dosimeter that is packaged in plastic therefore records a beta dose that is a bit lower than the dose that-would have been recorded by an unpackaged dosimeter.

None of the uncertainties identified in this discussion are seen as seriously affecting the use of the multi-element beta dosimeters. Although the dosimeters are still under development, especially in developing improved algorithms for dose analyses, the dosimeter is an important tool for reliably estimating beta and gamma doses.

REFERENCES

- Endres, G. W. R., R. I_ Scherpelz and P. L. Roberson, "Response of a Multi-Element Dosimeter to Calibrated Beta Sources with E_{max} from 0.23 to 3.5 MeV." Presented at the Health Physics Society Annual Meeting, Las Vegas, Nevada. June 27-July 1, 1982.
- Evans, R. D. 1955. The Atomic Nucleus. McGraw-Hill, New York.
- Fix, J. J., et al. 1981. <u>Hanford Personnel Dosimeter Supporting Studies</u> FY-1980, PNL-3536. Pacific Northwest Laboratory, Richland, Washington.
- Kocher, D. C. 1981. <u>Radioactive Decay Tables A Handbook of Decay Data for</u> <u>Application to Radiation Dosimetry and Radiological Assessments</u>. D0E/TIC-11026, National Technical Information Service, Springfield, Virginia.
- U.S. Nuclear Regulatory Commission (NRC). 1981. <u>Final Programmatic Environ-</u> <u>mental Impact Statement Related to Decontamination and Disposal of Radioac-</u> <u>tive Wastes Resulting from March 28. 1979. Accident Three Mile Island</u> <u>Nuclear Station, Unit 2.</u> NUREG-0683, National Technical Information <u>Service, Springfield, Virginia.</u>

APPENDIX 🛛

SOURCE CODE LISTING FOR RATIO7

APPENDIX I

SOURCE CODE LISTING FOR RATIO7

```
0001
        C
            This Program Analyzes Multi-element Beta Dosimeters.
0002
        С
0003
        C
            It is designed to handle either 4-element or 7-element
0004
            dosimeters, with 3 TLD's in each element.
        С
0005
        C
0006
        C
           Written by R.I.S. 7/82
0007
        С
            Altered
                                 1/83
0008
        C
0009
               CHARACTER31 ANS, BACK/'B '/, STAR (200, 7, 3)/4200*' '/
0010
                 CHARACTER33 OLDNEW, OLD/'OLD '/
0011
               CHARACTER35 FRNTBK(2)/'FRONT ', 'BACK '/
               CHARACTER98 HDG(7)/'MYLAR #1', '.005" #2', '.010" #3', '.020" #4',
1 '.032" #5', '.064" #6', '.125" #7'/
0012
0013
0014
                 CHARACTER324 FLNM
0015
                 CHARACTER*80 TITLE
0016
               DIMENSION RAW(200,7,3), AVE(200,7), IPCT(200,7), RATIO(200,6),
0017
                 1 CAL(200,6), DOSE(200), ID(200), IFB(200), COEF(6), YINT(6),
0018
                 2 RATIOMAX(6), RATIOMIN(6), BETA(200,6), GAMMA(200), GAMDOS(200),
0019
                 3 ERBDOS(200), ERGDOS(200), HR(200)
0020
                 DATA CAL/1200*0. /, RATID/1200*0. /
0021
                 DATA HR/200*2./
0022
        C
0023
        С
            OPEN FILES
0024
        C
0025
                 WRITE(6,10)
                 FORMAT(/' Enter filename for input data:',$)
0026
         10
0027
                 READ(5,20)FLNM
0028
         20
                 FORMAT(A24)
0029
                 OPEN (UNIT=10, FILE=FLNM, STATUS='OLD ', READONLY)
0030
                 OPEN(UNIT=15, FILE='RATIOOUT. DAT', STATUS='NEW',
0031
                 1 DISPOSE='PRINT/DELETE')
0032
        C
0033
        C
           PRESET VALUES
0034
        С
0035
                 COEF(2)=-1.0032
0036
                 COEF(3) = -1.0960
0037
                 COEF(4)=-. 7438
0038
                 COEF(5)=-1.1142
0039
                 COEF(6)=-6.1597
0040
                 YINT(2)=. 9943
0041
                 YINT(3)=. 9471
0042
                 YINT(4)=. 6028
                 YINT(5)=. 5885
0043
0044
                 YINT(6)=.6215
0045
                 RATIOMAX (2)=. 7800
0046
                 RATIOMAX(3)=. 6641
                 RATIOMAX(4)=. 5174
0047
0048
                 RATIOMAX(5)=. 3325
0049
                 RATIOMAX(6) = 0655
0050
                 RATIOMIN(2)=0.
0051
                 RATIOMIN(3)=0.
0052
                 RATIOMIN(4)=. 2996
                 RATIOMIN(5)=. 1871
0053
0054
                 RATIOMIN(6)=.0392
0055
                 CALMAX=, 218
0056
                 GCOEF=. 2037
0057
                 DESCR=5.
```

0058	IDESCR=IINT(DESCR)
0059	C
0060	C INPUT
0061	C
0062	WRITE(6,100)
0063	100 FORMAT(/' Input')
0064	READ(10,110)TITLE
0065	110 FORMAT(A80)
0066	DO 160 I=1,200
0067	READ(10,*)ID(I)
0068	IF(ID(I), LE, O)GOTO 170
0069	READ(10, 130)ANS
0070	
0071	DRINT*, TD(I), ANS
0072	
0072	$\mathbf{F}(\mathbf{A}) = \mathbf{F}(\mathbf{F})$
0074	
0074	
0075	
0076	145 READ(10, *)(RAW(1, 10, 0), $0=1, 3$)
0077	160 CONTINUE
0078	
0079	WRITE(6, 165)
0080	165 FORMAT(/' *** LIMIT OF 200 DOSIMETERS ANALYSIS PROCEEDS ***')
0081	$170 \qquad READ(10, 171, END=174) OLDNEW$
0082	171 FORMAT(A3)
0083	IF(OLDNEW .NE. OLD)GOTO 174
0084	C
0085	C Use old Calibration Factors (Dosimeters read out before 3/82)
0086	C
0087	COEF(4)=-1.5103
0088	COEF(5)=-2,3398
0089	YINT(4) = .9901
0090	YINT(5) = 9901
0091	CAI MAX = 3511
0092	$\mathbf{RATTOMAX}(4) = 0 4231$
0093	BATIOMAY(5) = 0.2731
0094	
0005	
0075	C CONTINUE
0078	C DECREG DAW COUNTS
0077	C PROCESS RAW COUNTS
0078	
0077	
0100	175 FORMAT(//' OFF AND RUNNING',//)
0101	IF(ND, NE, 200)ND=1-1
0102	
0103	WRITE(6,1//)ID(1), FRNIBK(IFB(1))
0104	177 FORMAT(18,1X,A5)
0105	DO 164 IC=1, 7
0106	AVE(1, 1C) = 0.
0107	SUMX2=0.
0108	SUMX=0.
0109	DO 179 J=1, 3
0110	AVE(I, IC) = AVE(I, IC) + RAW(I, IC, J)
0111	SUMX=SUMX+RAW(I, IC, J)
0112	179 SUMX2=SUMX2+RAW(I,IC,J)*RAW(I,IC,J)
0113	AVE(I,IC)=AVE(I,IC)/3.
0114	SD=0.
0115	IF(SUMX2-SUMX*SUMX/3GT. O.)
0116	1 SD=SQRT((SUMX2-SUMX*SUMX/3.)/2.)
0117	IF (AVE (I, IC), GT, O,)SD=SD/AVE (I, IC)
0118	180 PCT=SD+100
0119	c
0120	C Test for fliers in the TLD data
0121	C

0122		IF(PCT LE. DESCR) GOTO 183
0123		C12=100. *ABS(RAW(I,IC,1)-RAW(I,IC,2))/RAW(I,IC,2)
0124		C23=100.*ABS(RAW(I,IC,2)~RAW(I,IC,3))/RAW(I,IC,3)
0125		C31=100. *ABS(RAW(I,IC,3)-RAW(I,IC,1))/RAW(I,IC,1)
0126		NLO=0
0127		IF(C12 .LT. DESCR)NLO=NLO+1
0129		IF(C23 LT. DESCR)NLO=NLO+1
0129		IF(C31 .LT. DESCR)NLO=NLO+1
0130		IF(NLO .GE. 2)GOTO 183
0131		IF(NLD . EQ. 1)GOTO 1830
0132	C acc	cept AVE as is for thin elements & elt.7
0133		IF(IC LT. 4 .OR. IC .EQ. 7)GOTO 183
0134	c if	% > DESCR+3, reject element data for elt.4-6
0135		IF(PCT .LT. DESCR+3.) GOTO 183
0136		AVE(I,IC)=0.
0137		DO 1820 J=1,3
0138	1820	STAR(I,IC,J)='*'
0139		GOTO 183
0140	C one	e TLD is a flier
0141	1830	IF(C12 LT. DESCR)ISTAR=3
0142		IF(C23 LT. DESCR)ISTAR=1
0143		IF(C31 LT. DESCR)ISTAR=2
0144		STAR(I, IC, ISTAR)='*'
0145		AVE(I,IC)=(3.*AVE(I,IC)-RAW(I,IC,ISTAR))/2.
0146		KK=1
0147		IF(ISTAR .EQ. 1) KK=2
0148		PCT=100.*SQRT(2.)*ABS(RAW(I,IC,KK)-AVE(I,IC))/AVE(I,IC)
0149	183	IF(IC .EQ. 1)SD2CTS=(PCT/100.*AVE(I,1))**2
0150		IF(IC . EQ. 7)SD2CTS=SD2CTS+(PCT/100. *AVE(I,7))**2
0151		IF(IC . EQ. 7)ERGDOS(I)=SQRT(.093*.093 + PCT/100.*PCT/100.)
0152		IPCT(I,IC)=INT(.5+PCT)
0153	С	
0154	C Subtr	ract off Gamma Component of TLD responses
0155	C	
0156	184	CONTINUE
0157	DC	D 185 IC=1,6
0158	BE	ETA(I,IC)=AVE(I,IC)-AVE(I,7)
0159	185 IF	F(BETA(I, IC), LT. O.)BETA(I, IC)=O.
0160		GAMMA(I)=AVE(I,7)
0161	C	
0162	C Deter	rmine Calibration Factors
0163	C	
0164		
0165		IF(BETA(I,1).LE. 0.) GUTU 189
0166		DO 188 $J=2,6$
016/	188	RA(IU(I,J)=BE(A(I,J))/BE(A(I,I))
0168	189	1 + (AVE(1, 2), GT. 0 OR. AVE(1, 3), GT. 0 OR. AVE(1, 3)
0169	a 4 1	I.GI. 0.) GUIU 190
0170	C 4-1	Element Dosimeter
0171		
0172	1000	
0173	1892	IF(RATIU(I,J) .GT. RATUMAX(J)) CAL(I,J)=CALMAX
0174		$CAE(1,1) - (CAE(1,4) - CAE(1,3))/2.$ $CBOCE - 2 \times (CA) (I A) - CAE(I I) \times 22$
0174		00TO 1995
0177	C 7_1	Flement Dogimeter
0178	190	
0179	10	SUMCE=0
0180		SUMCE2=0
0181		DO 199 J=2, 6
0192		IF(RATIN(I.J) I.T. RATINMAX(J)) GUTU 192
0183		CAL(I,J)=CALMAX
0184		ICAL=ICAL+1
0185		GOTO 195

0186	192	IF(RATID(I,J) LT. RATIOMIN(J)) GOTO 199
0187		CAL(I,J) = RATIO(I,J) * COFF(J) + YINT(J)
0199		
0100	105	
0189	195	CAL(1,1) = CAL(1,1) + CAL(1,3)
0190		SUMCF=SUMCF+CAL(I,J)
0191		SUMCF2=SUMCF2+CAL(I,J)*CAL(I,J)
0192	199	CONTINUE
0102		
0173		CAL(1, 1) = CAL(1, 1)/1CAL
0194		SD2CF=(SUMCF2-SUMCF*SUMCF/ICAL)/(ICAL-1)
0195	С	
0196	C Cal	lculate Doses
0197	C C	
0100	1005	
0176	1992	GAMDUS(1)=GAMMA(1)*GCUEF
0199		ERGDDS(I)=ERGDDS(I)*GAMDDS(I)
0200		DOSE(I)=CAL(I,1)*BETA(I,1)
0201		ERBDOS(I)=0.
0202		
0203		ERBDUS(I) = SQR((SD2CF/CAL(I, 1)/CAL(I, 1)) + SD2C(S)
0204		1 BETA(I,1)/BETA(I,1))*DOSE(I)
0205	200	CONTINUE
0204	C	
0200		
0207	C 001	TPUT RAW DATA
0208	C	
0209		WRITE(6,205)
0210	205	FORMAT(/! Creating output!)
0211	205	
0211		
0212	210	FURMAT(1H1, ABO, //55%, 'SUMMARY OF DOSIMETER READINGS',
0213		1 //6X,'Dosimeter', 7(7X,A8),/13X,7(11X,'(nc)'))
0214		IL=O
0215		DO 250 I=1.ND
0210		
0210		
0217		IF(IL.LT.7)GOTO 215
0218		WRITE(15,212)
0219	212	EURMAT(//10%.'(* indicates a rejected flier)')
0000		
0220		WRITE(15, 210) TILE, HDG
0221		IL=1
0222	215	WRITE(15,220)ID(I),FRNTBK(IFB(I)),(RAW(I,IC,1),STAR(I,IC,1),
0223		1 IC=1, 7
0224	220	EDEMAT(//27 IA 17 AS / Dave ED 2.41.4(E14 2.41))
0224	220	FORMAT(7/3A) TO(TA)A37 Raw, FO. 2) AT(O(F14, 2) AT(7))
0225		
0226	225	WRITE(15, 230)(RAW(1, 10, 3), STAR(1, 10, 3), 10=1, 7)
0227	230	FORMAT(17X, 'Raw', F8.2, A1, 6(F14.2, A1))
0228		WRITE(15, 240)(AVE(1, IC), IPCT(1, IC), IC=1, 7),
0220	-	
0230	240	FURMA!(/1/X, 'Ave', FB.2, '+/-', I2, '%', 6(F9.2, '+/-', 12, '%'),
0231	-	+/16X, 'Beta', F8. 2, 5F15. 2, 11X, '0. 00', /16X, 'Ratio', 3X, '1. 00', 5F15. 4)
0232	250	CONTINUE
0233		WRITE(15,212)
0234	C	
0207		
0235	C 001	TPOT RESULTS
0236	С	
0237		WRITE(15,255)TITLE
0238	255	FORMAT(1H1, A80, //28X, '*** RESULTS ***'.45X, 'CALCULATED DOSES'.
0230		1 //1X Dogimeter 198 Icalibration Eactoral 228 Wiley Chin (
		O EV doladated Data TV doladation Factors , 234, mylal Chip',
0240		<pre>< JX, Calculated Beta', /X, Calculated Gamma',</pre>
0241		3 /12X,'. 005"',5X,'.010"',5X,'.020"',5X,'.032"',5X,'.064"',
0242		4 7X, 'Ave. ', 6X, 'Reading ', 8X, 2('Dose Error', 9Y)
0243		5 /9X,6(2X,'(rad/nc)'),7X,'(nc)',2(PX'(rad)), (rad)())
0240		$\frac{1}{1}$
0244		
0245		DO 280 I=1, ND, 2
0246		IL=IL+1
0247		IF(TL.LT.17)GOTO 258
0249		
0249		

0250	258	WRITE(15,259)
0251	259	FORMAT(1X)
0252		WRITE(15,260)ID(I),FRNTBK(IFB(I)),(CAL(I,J),J=2,6),CAL(I,1),
0253		+BETA(I.1), DOSE(I), ERBDOS(I), GAMDOS(I), ERGDOS(I)
0254	260	FORMAT(IA, 14, 45, 57, 2, 5510, 2, 513, 2, 2(513, 2, 59, 2))
0255	200	
		17-171 HRTE/15 2/0/17/17/ FONTBU/152/17/17/1/17/1/17/1/
0256		WRITE(15, 280)ID(1P), FRNIBK(1FB(1P)), (CAL(1P, 3), 3=2, 6),
0257		+CAL(IP, I), BETA(IP, I), DUSE(IP), ERBDUS(IP), GAMDUS(IP), ERGDUS(IP)
0258	280	CONTINUE
0259	L	
0260	C Ou	itput Summary Page of Doses, Dose Rates
0261	C	
0262		WRITE(15,300)TITLE
0263	300	FURMAT (1H1, A80, //28X, '*** SUMMARY OF DOSES AND DOSE RATES ***'.
0264		1 //1X, Dosimeter (, 5X, Beta', 6X, Gamma', 3X, Exposure', 3X.
0265		2 Pota Dogo Dato (5% Learna Dogo Dato (7% Logol) 7%
0265		2 Deta Dose Rate (γ) Gamma Dose Rate (γ) Λ (Σ) (Λ) Dose (γ) (Λ)
0200		$\begin{array}{c} 3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
020/		4 2(3/, (Fac/nF) (Fac/nF)))
0268		
0269		DO 350 I=1, ND, 2
0270		IL=IL+1
0271		IF(IL .LT. 17)GOTO 310
0272		WRITE(15,300)TITLE
0273		IL=0
0274	310	BETADR=DOSE(I)/HR(I)
0275		GAMMADR=GAMDOS(I)/HR(I)
0276		ERRBDR=ERBDOS(I)/HR(I)
0277		FRRGDR=FRGDDS(I)/HR(I)
0278		WRITE(15, 259)
0279		WEITE(15, 320) ID(I), FRNTRK(IFR(I)), DOSE(I), CAMDOS(I), HP(I), RETADD,
0280		1 EPERD CAMMARE FORCED
0200	220	T CHARDAN CHIRARY EXCERT
0201	320	TORMAI(13,17,183,17,27,10,2,710,1,17,211,222) E3,222,27,222,227
0202		
0283		
0284		GAMMADR=GAMDUS(IP)/HR(IP)
0285		ERRBDR=ERBDDS(IP)/HR(IP)
0286		ERRGDR=ERGDOS(IP)/HR(IP)
0287		WRITE(15,320)ID(IP),FRNTBK(IFB(IP)),DOSE(IP),GAMDOS(IP),HR(IP),
0288		1 BETADR, ERRBDR, GAMMADR, ERRGDR
0289	350	CONTINUE
0290	1	
0291	C Fi	nal Comments
0271	~ 11	
0275 0000	L.	
0273		
0294	400	WRITE(0)4007
0293	400	
0296		
0297		CLUSE(UNIT=15, DISPUSE='PRINI/DELETE')
0278		STOP
0299		END

APPENDIX II

OUTPUT LISTINGS FOR RATIO7 RUNS

000	AX/VMS SCHE AX/VMS SCHE AX/VMS SCHE	RATIOOUT 13-JUN-1983 13:38 RATIODUT 13-JUN-1983 13:38 RATIOOUT 13-JUN-1983 13:38	TTA4: 13-JUN-1983 13. 38 TTA4: 13-JUN-1983 13: 38 TTA4: 13-JUN-1983 13: 38	DISK\$USER_DISK1: CSCHE. BETDOSIRATIOOUT. DAT; 1 DISK\$USER_DISK1: CSCHE. BETDDSJRATIOOUT. DAT; 1 DISK\$USER_DISK1: CSCHE. BETDOSIRATIOOUT. DAT; 1	VAX/VMS VAX/VMS VAX/VMS
		SSSS CCCC H H EEEE S C H H E SSS C H H E SSS C HHHHH EEEE S C H H E SSSS CCCC H H EEEEE	E		
	RRRRRRR RRRRRRR RR RR RR RR RR RR RRRRRR	AAAAAA TTTTTTTTT IIIIII AAAAAA TTTTTTTTT IIIIII AA AA TT II AA AA TT II AA AA TT II AA AA AA TT II AA AA AA TT II AA AA AA AT II AA AA AA AA II AA AA AA TT II AA AA AA TI II AA AA AA TI II AAAAAAAAAAAA TT II II AA AA TT III AA AA TT III AA AT IIIIIIIIII	CCUCUCU CCUCUCU OCOCOCO OCOCOCO DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD OO O	UU UU TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	
	DDDDDDDD DDDDDDDD DD DD DD DD DDDDDD	AAAAAAA TTTTTTTTTT ;;;; AAAAAAA TTTTTTTTTT ;;;; AA AA TT ;;;; AAAAAAAAAAAA TT ;;;;; AA AA TT ;;;; AA AA TT ;;;; AA AA TT ;;;; AA AA TT ;;; AA AA TT ;;; AA AA TT ;;; AA AA TT ;;;	11 11 11 11 11 11 11 11 11 11		
	AX/VMB SCHE	SSSS CCCC H H EEEEI S C H H E S C H H E SSS C HHHHH EEEE S C H H E SSSS C H H E SSSS CCCC H H E SSSS CCCC H H EEEEI RATIOOUT 13-JUN-1983 13:38 RATIOOUT 13-JUN-1983 13:38 RATIOUT 13-JUN-1983 13:38	TTA4: 13-JUN-1983 13:38 TTA4: 13-JUN-1983 13:38 TTA4: 13-JUN-1983 13:38	DISK&USER_DISK1: CSCHE. BETDOSIRATIOOUT. DAT; 1 DISK&USER_DISK1: [SCHE. BETDOSIRATIOOUT. DAT; 1 DISK&USEF_DISK1: (SCHE BETDOSIRATIOOUT. DAT; 1	

SUMMARY OF DOSIMETER READINGS

Dosimeter		MYL	AR #1		.005" #2	. 010" #3	. 020" #4	. 032" #5	.064" #6	. 125" #7
		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
1 FRONT	Raw	74	56		0.00	0.00	66. 25	57.20	0.00	59. 20
	Raw	70	. 97		0.00	0.00	64.78	59.56	0.00	58.98
	Raw	75	20		0.00	0.00	61.02	59, 64	0.00	58,10
	Ave	73	58+/-	77	0 00+/- 0%	$0.00 \pm 7 = 0$	64 02+/- 4%	58 80+/- 2%	0.00+/- 0%	58 76+/- 1%
	Reta	14	82	5.	0.00	0.00	5.26	0.04	0.00	0.00
	Ratio	1	00		0.0000	0.0000	0. 3548	0.0027	0.0000	
		-								
1 BACK	Raw	154	30		0.00	0.00	67.88	69.05	0.00	95.06
1 2000	Raw	119	80		0.00	0.00	67 61	63 82	0 00	80.58
	Raw	86.	14		0.00	0.00	68. 38	68.21	0.00	70.47
	Ave	120.	08+/-	28%	0.00+/- 0%	0.00+/- 0%	67.96+/- 1%	67.03+/- 4%	0.00+/- 0%	82.04+/-15%
	Beta	38	04		0.00	0.00	0.00	0.00	0.00	0.00
	Ratio	1.	00		0. 0000	0.0000	0.0000	0. 0000	0. 0000	
	_									
2 FRONT	Raw	734.	00		0.00	0.00	623.80	686. 80	0.00	671.60
	Raw	690	40		0.00	0.00	645.50	677.70	0.00	658.80
	Rau	/13	50		0.00	C. 00	620. BO	667.30	0.00	662.20
	Ave	712	63+/-	3%	0.00+/- 0%	0.00+/- 0%	630.03+/- 2%	677.27+/- 1%	0.00+/- 0%	664.20+/- 1%
	Beta	48.	43		0.00	0.00	0.00	13.07	0.00	0.00
	Ratio	1.	00		0. 0000	0. 0000	0. 0000	0. 2698	0. 0000	
2 BACK	Raw	1372	00		0.00	0.00	804. 30 *	741.50	0.00	734.80
	Raw	1477.	00		0.00	0.00	886.00	766.00	0.00	718.20
	Raw	1466.	00		0.00	0.00	918. 40	800. 50	0.00	733.40
	Ave	1438.	33+/-	4%	0.00+/- 0%	0.00+/- 0%	902.20+/- 3%	769.33+/- 4%	0.00+/- 0%	728.80+/- 1%
	Beta	709.	53		0.00	0.00	173. 40	40. 53	0.00	0.00
	Ratio	1.	00		0. 0000	0.0000	0. 2444	0. 0571	0.0000	
3 FRONT	Raw	483	10		0.00	0.00	227. 50	204.10	0.00	188.10
	Raw	493.	50		0.00	0.00	242.80	207.10	0.00	193. 60
	Raw	484.	80		0.00	0. 00	229.40	212.90	0.00	180. 60
	Ave	487	13+/-	17.	0.00+/- 0%	0.00+/- 0%	233. 23+/- 4%	208.03+/~ 2%	0.00+/- 0%	187.43+/- 3%
	Beta	299.	70		0.00	0.00	45.80	20.60	0.00	0.00
	Ratio	1.	00		0. 0000	0.0000	0.1528	0. 0687	0. 0000	
3 BACK	Raw	197.	30		0.00	0.00	171.50	203. 90	0.00	198.00
	Raw	189.	50		0.00	0.00	182.00	201.90	0.00	201.90
	Raw	193.	50		0.00	0.00	180.80	198. 70	0.00	201. 40
	Ave	193.	43+/-	2%	0.00+/- 0%	0.00+/- 0%	178.10+/- 3%	201. 50+/- 1%	0.00+/~ 0%	200.43+/- 1%
	Beta	0	00		0.00	0.00	0.00	1.07	0.00	0.00
	Ratio	1.	00		0.0000	0.0000	0.0000	0.0000	0.0000	

· · · ·

(# indicates a rejected flier)

11.2

· · · · ·

· ·

SUMMARY OF DOSIMETER READINGS

.

٠

.

•

	Dosimeter		MYLAR #1		.005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
			(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
		_								
	4 FRONT	Raw	567.20		0.00	0.00	171.50	153.90	0.00	138.30
		Raw	592.10		0.00	0.00	168.20	140.10	0.00	138.90
		Raw	627.00*		0,00	0.00	1/1.00	144.60	0.00	132.40
		A∨e	579. 65+/-	- 3%	0.00+/- 0%	0.00+/- 0%	170.23+/- 1%	146.20+/- 5%	0.00+/- 0%	136. 53+/- 3%
		Beta	443.12		0.00	0.00	33. 70	9.67	0.00	0.00
		Ratio	1.00		0. 0000	0. 0000	0. 0761	0. 0218	0. 0000	
	A BACK		160 20		<u> </u>	A 44	153 40	144 20	0.00	142 00
	4 BACK	Paul	142 40		0.00	0.00	147 70	154 40	0.00	172 00
		Daw	163.40		0.00	0.00	149 50	142 00	0.00	142.00
		Raw	104. 50		0.00	0.00	147. 50	103.00	0.00	IDE. EV
		Ave	159.37+/-	- 5%	0.00+/- 0%	0.00+/- 0%	150 20+/- 2%	162 13+/- 3%	0.00+/- 0%	166.00+/- 3%
		Beta	0.00		0.00	0.00	0.00	0.00	0.00	0.00
		Ratio	1.00		0.0000	0.0000	0.0000	0.0000	0.0000	
•	5 ERONT	Raw	397 00		0.00	0.00	191 50	164 30	0.00	169 40
	5 11(2)(1)	Raw	352 50		0.00	0.00	177 70	172.50	0.00	164 30
		Raw	236.70		0.00	0.00	174.50	164.40	0.00	165.20
		Ave	328. 73+/-	-25%	0.00+/- 0%	0.00+/- 0%	181.23+/- 5%	167.07+/- 3%	0.00+/- 0%	166.30+/- 2%
		Beta	162.43		0.00	0.00	14. 93	0.77	0.00	0.00
		Ratio	1.00		0. 0000	0. 0000	0. 0919	0. 0047	0. 0000	
.			000 00	-		0.00	100 00			100 B0
	J BACK	Raw	200.20		0.00	0.00	180.30	181.00	0.00	180. 50
		Pau	195.00		0.00	0.00	174.80	184.40	0.00	199 00
		New	170.10		0.00	0.00	178.70	100. 30	0,00	166.70
		Ave	196. 43+/-	- 2%	0.00+/- 0%	0.00+/- 0%	178.93+/- 1%	181.90+/- 1%	0.00+/- 0%	186.83+/- 3%
		Beta	9.60		0.00	0.00	0.00	0,00	0.00	0.00
		Ratio	1.00		0. 0000	0.0000	0. 0000	0.0000	0.0000	
		_								
	6 FRUNT	Raw	571.80		0.00	0.00	472.30	445.50	0.00	450.50
		Raw	557.10		0.00	0.00	470.50	460.20	0.00	478.30
		каш	590, 40		0.00	0.00	491.60	458.00	0.00	482.30
		Ave	573.10+/-	- 3%	0.00 + / - 0%	0.00 + / - 0%	478 13+/- 2%	454.57+/- 2%	0.00 + / - 0%	470.37+/- 4%
		Beta	102.73	0.	0.00	0.00	7.77	0.00	0.00	0.00
		Ratio	1.00		0.0000	0.0000	0.0756	0.0000	0.0000	
	6 BACK	Raw	1709. 00		0.00	0.00	582.90	562.20	0.00	500.10
		Raw	1740.00		0.00	0.00	636.10	588.10	0.00	555. 70*
		Raw	1762.00		0.00	0.00	617.30	569.00	0.00	503. 40
		Ave	1737. 00+/-	- 2%	0.00+/- 0%	0.00+/- 0%	612.10+/- 4%	573. 10+/- 2%	0.00+/- 0%	501.75+/- 0%
		Beta	1235.25		0.00	0.00	110.35	71.35	0.00	0.00
		Ratio	1.00		0.0000	0.0000	0. 0893	0. 0578	0.0000	

(* indicates a rejected flier)

II.3

٠

Dosimeter		MYL	AR #1		.005" #2	. 010" #3	. 020" #4	.032" #5	.064" #6	.125" #7
		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
7 2000	_						454 00			
/ FRUNT	Raw	542	. 20		0.00	0.00	451.00	481.60	0.00	458.20
	Raw	481	. 70+		0.00	0.00	464.30	464.60	0.00	490. 40
	Raw	525	. 70		0,00	0.00	445.80	469.80	0,00	486, 20
	Av.a	522	95+/-	77	0 00+/- 07	0.00+(0)	453 70+/- 37	472 00+/- 27	0.00+(-0)	A70 07+/- AY
	Data	55	40	E /~	0.00+7-0%	0.00		472.0017 EX	0.00+7= 0%	478. 27+7- 4%
	Datia				0.000	0.00	0.00	0,000	0.00	0.00
	Ratio		. 00		0.0000	0.0000	0.0000	0.0000	0.0000	
			-							
7 BACK	Raw	1668	. 00*		0.00	0.00	634.70	543.00	0.00	523. 60
	Raw	1503	. 00		0.00	0.00	611.00	582.60	0.00	504. BO
	Raw	1570	. 00		0.00	0.00	635.50	533. 10	0.00	517.60
	Ave	1536	50+/-	3%	0.00+/- 0%	0.00+/- 0%	627.07+/- 2%	552 90+/- 5%	0.00 + / - 0%	515 33+/- 2%
	Beta	1021	17		0.00	0.00	111.73	37 57	0.00	0.00
	Ratio	1	00		0 0000	0 0000	0 1094	0.0368	0 0000	
		-				0.0000	0.1074	0.0000	0.0000	
		404			0.00	0.00	475 (0		0.00	
6 FRUNI	каю	470	. 10		0.00	0.00	4/2.60	451.60	0.00	454.40
	Raw	500	20		0.00	0.00	452.40	480.40	0.00	461.30
	Kaw	204	10		0.00	0.00	4/5.50	450.90	0.00	453.40
	Ave	501	80+/-	17	0.00 + / - 0%	0.00+/-0%	466 83+/- 3%	460 97+/- 4%	0.00+/07	456 37+/- 1%
	Beta	45	43		0.00	0.00	10 47	4 60	0.00	0.00
	Ratin	1	00		0 0000	0 0000	0 2304	0 1012	0,000	0.00
		-			0.0000	0.0000	0.2004	UIUIE	0.0000	
D. BACK	D				<u> </u>					
8 BACK	Raw	2084	00*		0.00	0.00	616.30	604.30	0.00	536.90
	Raw	1830	00		0.00	0.00	574.60	604.30	0.00	524.20
	Raw	1845	. 00		0.00	0.00	625.80	649.80	0.00	525. 10
	Ave	1862	50+/-	2%	0.00+/- 0%	0.00+/- 0%	605.57+/- 4%	619.47+/- 4%	0.00+/- 0%	528.73+/- 1%
	Beta	1333	77		0.00	0.00	76.83	90.73	0.00	0.00
	Ratio	1	00		0.0000	0. 0000	0. 0576	0.0680	0.0000	
9 FRONT	Raw	834	90		0.00	0.00	883 80	807 00	0.00	714 40+
	Raw	844	50		0.00	0.00	855 20	833 70	0.00	782 20
	Raw	875	80		0.00	0.00	842.00	881 30	0.00	807 90
-		0,0			0.00	0.00	042.00		0.00	607.70
	Ave	852	40+/-	2%	0.00+/- 0%	0.00+/- 0%	860.33+/- 2%	840.67+/- 4%	0.00+/- 0%	795.05+/- 2%
	Beta	57.	35		0.00	0.00	65.28	45.62	0.00	0.00
	Ratio	1.	00		0.0000	0.0000	1, 1383	0. 7954	0.0000	
9 BACH	Raw	2000	00		0.00	0.00	070 00	833 40	0.00	020 20
/ Brich	Rau	3540	00		0.00	0.00	727.00 000 00	733.00	0.00	720.20
	Raw	5626	00		0.00	0.00	700.70	704.40	0.00	740.00
	Raw	020.	00		0.00	0.00	77/.60	721. /U	0.00	791.00
	Ave	4358.	00+/-2	25%	0.00+/- 0%	0.00+/- 0%	969 43+/- 4%	919.90+/- 2%	0.00+/- 0%	937. 23+/~ 2%
	Beta	3420.	77		0.00	0.00	32.20	0.00	0.00	0.00
	Ratio	1.	00		0.0000	0.0000	0.0094	0.0000	0.0000	

SUMMARY OF DOSIMETER READINGS

(* indicates a rejected flier)

, .

.

.

• • •

. .

SUMMARY OF DOSIMETER READINGS

r

•

. .

Dosimeter		MYLAR #1	. 005" #2	. 010" #3	020" #4	. 032" #5	. 064" #6	. 125" #7
		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
10 FRONT	Raw	1.02	0,00	0.00	0.93	0. 92	0.00	0. 92
	Raw	0.99	0.00	0 00	0.93	0.92	0.00	0.92
	Raw	0.96	0.00	0.00	0.96	0.95	0.00	0.93
			0.00	0.00			0.00	
	Ave	0.99+/- 3%	0.00+/- 0%	0.00+/- 0%	0.94+/- 2%	0.93+/- 2%	0.00+/- 0%	0.92+/- 1%
	Beta	0.07	0.00	0.00	0. 02	0.01	0.00	0.00
	Ratio	1.00	0. 0000	0. 0000	0. 254B	0. 1154	0. 0000	
ID BACK			- A AA	~ ~~	A 65	0.00		
TO BACK	каш	1.01	0.00	0.00	0.98	0.92	0.00	0. 92
	Raw	1.01	0.00	0.00	0.94	0.90	0.00	0. 92
	Каш	0.97	0.00	0.00	0. 94	0.94	0.00	0.90
	Ave	0.99+/- 2%	0.00+/- 0%	0.00+/- 0%	0.95+/- 3%	0.92+/- 2%	0.00 + / - 0%	0.91+/- 1%
	Beta	0.08	0.00	0.00	0.04	0.00	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0. 5000	0.0500	0.0000	0.00
11 FRONT	Raw	362. 70	0 00	0.00	342 10	402 00	0.00	372 10
	Raw	375 20	0.00	0.00	345 30	392 30	0.00	394 00
	Raw	361 00	0.00	0.00	310 70*	384 40	0.00	395 50
		561.00	0.00	0,00	310. /0*	300. av	0.00	
	Ave	366. 30+/- 2%	0.00+/- 0%	0.00+/- 0%	343. 70+/- 1%	390. 30+/- 3%	0.00+/- 0%	387.20+/- 3%
	Beta	0.00	0.00	0.00	0.00	3.10	0.00	Ö. OÖ
	Ratio	1.00	0. 0000	0. 0000	0. 0000	0.0000	0.0000	
11 BACK	Raw	356. 40	0.00	0.00	367.10	388. 60	0.00	420. 20
	Raw	363.70	0.00	0.00	372.10	404. 30	0.00	406. BO
	Raw	373, 50	0.00	0.00	345. 20	416.00	Ô. OÒ	409.30
	Ave	364. 53+/~ 2%	0.00+/- 0%	0.00+/- 0%	361.47+/- 4%	402 97+/- 3%	0.00+/- 0%	412 10+/- 2%
	Beta	0.00	0.00	0 00	0.00	0.00	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0.0000	0. 0000	0.0000	0.00
12 FRONT	Raw	305. 20	0.00	0.00	294.60	308.80	0.00	270, 30
	Raw	357.90	0.00	0.00	294.70	292.00	0.00	263.30
	Raw	334. 30	0.00	0.00	317.70	303. 80	0.00	260. 50
	· · · · ·	2002 47. / DX	0.00.4 0*	0.00.0				ALL 70. / DU
	Date	17 77 BA	0.00+7 = 0%	0.00+/~ 0%	302.33+/- 4%	301.33+/- 3%	0.00+/- 0%	204.70+7-2%
	Deta Deta	0/. //	0.00	0.00	37.63	36.83	0.00	0.00
	Hat10	1.00	0.0000	0.0000	0. 5553	0. 5435	0.0000	
12 BACK	Raw	336 00	0.00	0.00	300 40	275 90	0.00	304 40
LE BRUK	Raut	511 20	0.00	0.00	204 90	259 00	0.00	207.0V
	Dave	ALL 70	0.00	0.00	304.70	207.00	0.00	267.40
	Raw	466.70	0.00	0.00	304.10	282.90	0.00	276.00
	Ave	437. 97+/-21%	0.00+/- 0%	0.00+/- 0%	303.13+/- 1%	272.60+/- 5%	0.00+/- 0%	289.33+/- 2%
	Beta	148.63	0.00	0.00	13.80	0.00	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0.0928	0 0000	0.0000	

(* indicates a rejected flier)

11.5

٠

Dosimeter		MYL	AR #1		.005" #2		. 010" #3	020" #4	. 032" #5	,064" #6	<u>, 125"_#7</u>
		(1	nc)		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)
	_								100.00	0.00	07.40
13 FRONT	Raw	183.	50		0.00		0.00	111.40	103.00	0.00	97.48
	Raw	181.	90		0.00		0.00	109.10	99.26	0.00	96.79
	Raw	186.	20		0.00		0.00	112,00	103. 50	0,00	
	Av. 6	103	87+/	17	0.00+/-	07	0.00+/07	110 83+/- 17	101 92+/- 2%	0.00+/-07	97 85+/- 17
	Data	103.	02	1 /.	0.001/	0.4	0.0017 0.0	10.001/ 1/	4 07	0.00	0.00
	Deta	1	00		0.000		0.000	0 1510	0 0474	0.000	0.00
	Nacio	•.	00		0.0000		0.0000	0. 1010	0.0474	0.0000	
13 BACK	Raw	121.	50		0.00		0.00	98 . 50	98. 28	0.00	97. 92
	Raw	117.	70		0.00		0.00	97.64	97.88	0.00	99. 01
	Raw	119.	10		0.00		0.00	97.40	96. 98	0.00	100. 70
	A.v.a	110	47+/-	27	0.00+/-	07	0 00+/- 07	97 85+/- 17	97 71+/- 17	0.00+/07	99 21+/- 17
	Rata	20	22	2.4	0.0017	0.	0.00.	0.00	0.00	0.00	0.00
	Ratio	1	00 ~		0 0000		0 0000	0 0000	0.0000	0 0000	
	NUUIU	•.			0.0000		0.0000	0.0000	0.0000	0.0000	
	n				0.00		0.00	244 00	3/5 00	0.00	24/ 10
14 FRUNT	каш	376.	00		0.00		0.00	366.00	365.90	0.00	346.10
	каш	427	80		0.00		0.00	385.50	365.20	0.00	336.30
	каю	433.	20	-	0.00		0.00	3/9.70	337. 10	0.00	
	A va	419	00+/-	57	0.00+/-	07	0.00+/07	377 07+/- 37	363 40+/- 1%	0 00+/- 0%	354 63+/- 22
	Reta	64	37	5.	0.00.	0.	0.00	22 43	8 77	0.00	0.00
	Ratio	1	00		0 0000		0 0000	0 3485	0 1362	0 0000	0.00
	Matro	•	00		0.0000		0.0000	0.0100	U. IOBL	0.0000	
IA BACK		247			0.00		0.00	225 40	242 80	0.00	225 40
IN BACK	Raw	347	70		0.00		0.00	333. 60	354 70	0.00	355 10
	Dave	347.	20		0.00		0.00	340.50	338.70	0.00	333.10
	Raw	341.	20		0.00		0.00	324.70	347.20	0.00	340.10
	Ave	352.	10+/-	4%	0.00+/-	0%	0.00+/- 0%	336.27+/- 4%	355.57+/- 2%	0.00+/- 0%	343.60+/- 3%
	Beta	8.	50		0.00		0.00	0.00	11.97	0.00	0.00
	Ratio	1.	00		0.0000		0.0000	0.0000	1.4078	0.0000	
	D -1	7027	00		0.00		0.00	2828 00	1252 00	0.00	1275 00
15 PROM	Daw	2929	00		0.00		0.00	2973 00	1352.00	0.00	1320.00
	Daw	2052	00		0.00		0.00	2073.00	1527 00*	0.00	1472 00*
	Naw	EIJE.	00		0.00	,	0.00	2778.00	1037.00*	0.00	1472.00*
	Ave	2959.	33+/-	1%	0.00+/-	0%	0.00+/- 0%	2869.67+/- 2%	1357.00+/- 1%	0.00+/- 0%	1347. 50+/- 3%
	Beta	1611.	83		0.00		0.00	1522.17	9.50	0.00	0.00
	Ratio	1.	00		0.0000		0.0000	0. 9444	0. 0059	0.0000	
15 BACK	Raw	4828	00		0.00		0.00	3368 00	1497 00	0.00	1642 00
TO BHON	Raw	5054	00		0.00		0.00	3079 00	1354 00*	0.00	1606 00
	Raw	4875	00		0.00		0.00	3112.00	1533.00	0.00	1650.00
					2.00		0.00	2	1000.00	0.00	
	Ave	4919.	00+/-	2%	0.00+/-	0%	0.00+/- 0%	3186.33+/- 5%	1515.00+/- 2%	0.00+/- 0%	1632.67+/- 1%
	Beta :	3286.	33		0.00		0.00	1553. 67	0.00	0.00	0.00

0. 4728

0.0000

0.0000

. . . .

SUMMARY OF DOSIMETER READINGS

(* indicates a rejected flier)

0.0000

0.0000

Ratio 1.00

. .

•

٠

•

•

SUMMARY OF DOSIMETER READINGS

,

•

.

.

	Dosimeter		MYLAR #1	.005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
			(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
	16 FRONT	Raw	390, 30	0.00	0.00	374. 70	362. 30	0.00	353.30
		Raw	399.40	0.00	0.00	381.70	360.80	0.00	359 60
		Raw	398 70	0 00	0.00	352 90	381 60	0.00	362 70
•									
		Ave	396. 13+/- 1	X 0.00+/- 0X	0.00+/- 0%	369.77+/- 4%	374.90+/- 3%	0.00+/- 0%	358.53+/- 1%
	В	eta	37.60	0.00	0.00	11.23	16. 37	0.00	0.00
	R	atio	1.00	0.0000	0. 0000	0. 2988	0. 4353	0. 0000	
	1. BARK		655 JA						
	16 BACK	Raw	3/8. 60*	0.00	0.00	362.00	395.40	0.00	364.90
		Raw	417.80	0.00	0.00	375.00	367.80	0.00	341.70
		Ra⊎	414.00	0.00	0.00	369.80	361.80	0.00	361.50
		Ave	415. 90+/- 1	x 0.00+/- 0%	0.00+/- 0%	368.93+/- 2%	375.00+/- 5%	0.00+/- 0%	356.03+/- 4%
	В	eta	59.87	0.00	0.00	12.90	18.97	0.00	0.00
	Ř	atio	1.00	0.0000	0.0000	0. 2155	0. 3168	0.0000	
	17 FRONT	Raw	1 43	0 00	0.00	1 27	1 27	0.00	1 23
		Raw	1 46	0.00	0.00	1 20	1 19	0.00	1 14
		Raw	1 42	0.00	0.00	1 23	1 19	0.00	1.25
				0.00	0.00	1. 23	<u> </u>	0.00	1.25
		A∨e	1.44+/- 1	× 0.00+/- 0×	0.00+/- 0%	1.23+/- 3%	1.22+/- 4%	0.00+/- 0%	1.21+/- 5%
	В	eta	0. 23	0.00	0.00	0.03	0. 01	0,00	0.00
	R	atio	1.00	0. 0000	0.0000	0. 1111	0. 0351	0.0000	
	17 BACK	Raw	1.44	0.00	0.00	1. 25	1.23	0.00	1.23
		Raw	1.47	0.00	0.00	1. 22	1.20	0.00	1.29
		Raw	1.40	0.00	0. 00	1.28	1.24	0.00	1.26
		Ave	1 43+/- 3	x 0.00+/- 0%	0.00+/07	1 25+/- 37	1 22+/- 17	0 00+/- 07	1 26+/- 27
	в	eta	0 17	0.00	0.00	0.00	0.00	0.00	0.00
•	R	atio	1.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
						0.0000	0.0000	0.0000	
	18 FRONT	Raw	664, 80	0.00	0.00	589, 60	590. 30	0.00	622.90
		Raw	679 10	0.00	0.00	550 80	588 60	0.00	539 90
		Raw	692.00	0.00	0.00	577.40	570.20	0.00	576 70
							V. U. EV	v. vv	
		Ave	678. 63+/- 2	0.00+/- 0%	0.00+/- 0%	572.60+/- 3%	583. 03+/- 2%	0.00+/- 0%	579.83+/~ 7%
	В	eta	98. 60	0.00	0.00	0.00	3. 20	0.00	0.00
	R	atio	1.00	0.0000	0. 0000	0. 0000	0. 0324	0. 0000	
		_				<u></u>			
	18 BACK	Raw	305.00	0.00	0.00	582.70	602 10	0.00	558.40
		Raw 1	135.00	0.00	0.00	589.00	595.10	0.00	557.50
		Raw	651.00	0.00	0.00	587.70	574.90	0.00	555.00
		Ave 1	030. 33+/-33	× 0.00+/- 0%	0.00+/- 0%	586.47+/- 1%	590.70+/- 2%	0.00+/- 0%	556.97+/- 0%
	В	eta	473.37	0.00	0.00	29.50	33.73	0.00	0.00
	R	atio	1 00	0.0000	0.0000	0.0623	0.0713	0.0000	

(# indicates a rejected flier)

• •

Dosimeter		MYLAR #1	l	. 005" #2	.010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
19 FRONT	Γ Raω	307.10		0.00	0.00	238.80	235. 50	0.00	0.00
	Raw	285.60		O . OO	0.00	253. 10	247.40	0.00	0.00
	Raw	265.10		0,00	0.00	226.80	247.80	0,00	0,00
	Ave	286. 60+7	- 8%	0.00+/- 0%	0.00+/- 0%	239. 57+/- 5%	243.57+/- 3%	0.00+/- 0%	0.00+/- 0%
	Beta	286. 60		0.00	0. 00	239. 57	243. 57	0.00	0.00
	Ratio	1.00		0. 0000	0. 0000	0. 8359	0. 8498	0. 0000	
19 BACK	Raw	327.30		0.00	0.00	227.70	227.60	0.00	234.70
	Raw	336.10		0.00	0.00	234.20	245.10	0.00	243.60
	Raw	326.00		0.00	0.00	243.00	231.80	0.00	242. 40
	Ave	329. 80+/	- 2%	0.00+/- 0%	0.00+/- 0%	234. 97+/- 3%	234. 83+/- 4%	0.00+/- 0%	240. 23+/- 2%
	Beta	89. 57		0.00	0.00	0.00	0.00	0.00	0.00
	Ratio	1.00		Ö. 0000	0.0000	0.0000	0. 0000	0.0000	
04 500N		04E 40		0.00	0.00	2/2 00	2/8 70	0.00	247 80
21 FRUNI	каш	315.60		0.00	0.00	267.00	267.70	0.00	207.00
	каш	313.40		0.00	0.00	251.80	258.90	0.00	247. JU
	Каш	351, 30	· ••	0,00	0.00	261.60	267.10	0.00	00
	Ave	316. 77+/	- 1%	0.00+/- 0%	0.00+/- 0%	260. 80+/- 3%	265.23+/- 2%	0.00+/- 0%	255.37+/- 4%
	Beta	61.40		0.00	0.00	5.43	9.87	0.00	0.00
	Ratio	1.00		0. 0000	0.0000	0. 0885	0. 1607	0.0000	
		·							
21 BACK	Raw	866.60		0.00	0,00	270.00	254.40	0.00	255.80
	Raw	1144.00		0.00	0.00	260.80	244.00	0.00	257.10
	Raw	1032.00		0.00	0.00	268.60	264.70	0.00	248.80
	Ave	1014. 20+/	-14%	0.00+/- 0%	0.00+/- 0%	266. 47+/- 2%	254.37+/- 4%	0.00+/- 0%	253.90+/- 2%
	Beta	760.30		0.00	0.00	12. 57	0. 47	0.00	0.00
	Ratio	1.00		0.0000	0.0000	0.0165	0.0006	0. 0000	
								0.00	2224 22
23 FRONT	Raw	3197.00		0.00	0.00	4728.00	5363.00	0.00	3227.00
	Raw	3234.00		0.00	0.00	5256. UU	5228.00	0.00	3221.00
	каш	3005.00		0.00	0.00	4939.00	5074.00	0.00	3172.00
	Ave	3145. 33+/	- 4%	0.00+/- 0%	0.00+/- 0%	5041.00+/- 4%	5288.33+/- 5%	0.00+/- 0%	3205.67+/- 1%
	Beta	0.00		0.00	0.00	1835. 33	2082. 67	0.00	0.00
	Ratic	1.00		0.0000	0.0000	0.0000	0.0000	0. 0000	
00 0404	Davis	LALL 00		0.00	0.00	8383 00	7401 00	ā 00	2544 004
23 BACK	Paul	4935 00		0.00	0.00	7203.00	7801.00	0.00	3337.00*
	Raw	6419 00		0.00	0.00	9008.00	7544 00	0.00	3342 00
	New	0010.00		0.00	0.00	7027. UU	, 000. 00	0.00	
	Ave	6673.00+/	- 4%	0.00+/- 0%	0.00+/- 0%	9104.33+/- 2%	7726.33+/- 3%	0.00+/- 0%	3292.00+/- 3%
	Beta	3381.00		0.00	0.00	5812.33	4434.33	0.00	0.00
	Ratio	1.00		0.0000	0.0000	1.7191	1.3115	0.0000	

. . . .

SUMMARY OF DOSIMETER READINGS

(# indicates a rejected flier)

• • • •

•

•

SUMMARY OF DOSIMETER READINGS

.

.

.

.

Dosimeter		MYL	AR #1		.005" #2	.010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
					0.00					
25 FRUNI	Raw	923	. 60		0.00	0.00	809.80	941.70	0.00	933. 20
	Raw	941	. 90		0.00	0.00	811.30	8/1.80	0.00	884.30
	Raw	942	. 60		0.00	0.00	840.30	930. 60	0.00	874.20
	Ave	936	. 03+/-	17	0.00+/- 0%	0.00+/- 0%	820.47+/- 2%	914. 70+/- 4%	0.00+/- 0%	897.23+/- 4%
	Beta	38	. 80		0.00	0.00	0.00	17.47	0.00	0.00
	Ratio	1	. 00		0.0000	0.0000	0.0000	0. 4502	0. 0000	
	82.5	615	- 20					700 70		
23 BACK	Dave	792	. 00		0.00	0.00	836.20	700.70	0.00	841.80
	r a w	741	. 90		0.00	0.00	868.20	740.30	0.00	823.00
	Kaw	919	30		0.00	0.00	878.00	742. 70	0.00	796.00
	Ave	934	40+/-	1 %	0.00+/- 0%	0.00+/- 0%	860. 80+/- 3%	727.90+/- 3%	0.00+/- Ő%	820. 27+/- 3%
 	Beta	114	13		0.00	0.00	40. 53	0.00	0.00	0.00
	Ratio	1	00		0.0000	0.0000 ,	0. 3551	0.0000	0.0000	
24 EPONT	Paul	474	80		0.00	0.00	100 00	182 40	0.00	101 40
EO PROMI	Dave	720. A11			0.00	0.00	178.00	172.00	0.00	181.40
	Raw	410.			0.00	0.00	195.30	186.90	0.00	171.70
 	Raw	347	40		0.00	0.00	205.20	187.70	0.00	176.60
	Ave	413	67+/-	4%	0.00+/- 0%	0.00+/- 0%	199.50+/- 3%	189. 07+/- 2%	0.00+/- 0%	176.57+/- 3%
	Beta	237.	10		0.00	0.00	22. 93	12. 50	0.00	0.00
	Ratio	1.	00		0.0000	0.0000	0. 0967	0. 0527	0.0000	
 26 BACK	Raw	272	10		0.00	0.00	182 00	180 90	0.00	195 50
EO DHUN	Pau	233	00		0.00	0.00	194 00	197 50	0.00	191.40
	Raw	200.	40		0.00	0.00	197 50	173. 30	0.00	101.40
	Kaw	220	40		0.00	0.00	147. 50	183. 80	0.00	189.40
	Ave	230.	50+/	2%	0.00+/- 0%	0.00+/- 0%	191.17+/- 4%	186.07+/- 4%	0.00+/- 0%	188.77+/- 4%
	Beta	41.	73		0.00	0.00	2.40	0,00	0.00	0.00
	Ratio	1.	00		0.0000	0.0000	0. 0575	0.0000	0.0000	
			-		0.00					
27 FRUNT	Raw	187.	30		0.00	0.00	183.30	187.40	0.00	179.40
	Raw	154.	40*		0.00	0.00	1/2.40	184.20	0.00	179.70
	каш	192	90		0,00	0.00	174.00	178, 80	0.00	177.10
	Ave	190	10+/-	2%	0.00+/- 0%	0.00+/- 0%	176. 57+/- 3%	183. 47+/- 2%	0.00+/- 0%	178.73+/- 1%
	Beta	11.	37		0.00	0.00	0.00	4.73	0.00	0.00
	Ratio	1.	00		0. 0000	0. 0000	0. 0000	0. 4164	0. 0000	
27 BACH	Raw	150	70		0.00	Ó.00	151 30	159 20	0.00	142 00
E/ BHUK	Raw	155	70		0.00	0.00	156 50	173 30	0.00	170 50
	Daw	157	70		0.00	0.00	151 70	140.00	0.00	144 10
	Raw	137.	/0		0.00	0.00	131.70	100. 00	0.00	100. 10
	Ave	157.	70+/-	12	0.00+/- 0%	0.00+/- 0%	153.17+/- 2%	167.10+/- 4%	0.00+/- 0%	166. 53+/- 2%
	Beta	0.	00		0.00	0.00	0.00	0. 57	0.00	0.00
	Ratio	1.	00		0.0000	U. 0000	0.0000	0.0000	0.0000	

(# indicates a rejected flier)

II.9

De	simeter		MYL	AR #1		.005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
			(1	nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
29	7 FRONT	Raω	78.	19		0.00	0.00	61.22	62. 53	0.00	57.89
		Raw	78.	70		0.00	0.00	63. 58	59.77	0.00	60. 29
		Raw	74.	76		0.00	0.00	63.82	62.86	0. 00	55. 60
		Ave	77	22+/-	3%	0.00+/- 0%	0.00+/- 0%	62.87+/- 2%	61.72+/- 3%	0.00+/- 0%	57.93+/- 4%
		Beta	19	29		0.00	0.00	4.95	3.79	0.00	0.00
		Ratio	1.	00		0. 0000	0.0000	0.2564	0. 1966	0.0000	
					-						
29	7 BACK	Raw	62.	01		0.00	0.00	53. 64	51.60	0.00	55. 41
		Raw	59.	08		0.00	0.00	54.81	56.46	0.00	54. 22
		Raw	58.	18		0.00	0.00	58. 57	54. 91	0.00	54.36
		Ave	59.	76+/-	3%	0.00+/- 0%	0.00+/- 0%	55.67+/- 5%	54.32+/- 5%	0.00+/- 0%	54.66+/- 1%
		Beta	5.	09		0.00	0.00	1.01	0.00	0.00	0.00
		Ratio	1.	00		0. 0000	0.0000	0.1983	0. 0000	0.0000	
-			100			0.00	0.00	(E 04	(4.02	0.00	E7 07
3	DERUNT	Raw	100.	90		0.00	0.00	60.34	64.82	0.00	57.37
		Raw	100.	60		0.00	0.00	62.85	61.91	0.00	59. 59
		Rau	100	60		0.00	0.00	66.86	61.30	0.00	59, 95
		Ave	100.	70+/-	0%	0.00+/- 0%	0.00+/- 0%	65.02+/- 3%	62.68+/- 3%	0.00+/- 0%	58.97+/- 2%
		Beta	41.	73		0.00	0.00	6.05	3.71	0.00	0.00
		Ratio	1.	00		0. 0000	0. 0000	0. 1449	0. 0888	0. 0000	
			-=:-								
30	D BACK	Raw	71.	48		0.00	0.00	55.74	53. 67	0.00	56.06
		Raw	71.	72		0.00	0.00	55.41	55. 32	0.00	58. 56
		Raw	60.	45*		0.00	0.00	56.15	55. 99	0.00	58. 64
		Ave	71.	60+/-	0%	0.00+/- 0%	0.00+/- 0%	55.77+/- 1%	54.99+/- 2%	0.00+/- 0%	57.75+/- 3%
		Beta	13.	85		0.00	0.00	0.00	0.00	0.00	0.00
		Ratio	1.	00		0. 0000	0.0000	0. 0000	0.0000	0.0000	
-		n	4.07	70		0.00	0.00		00.50	0.00	7, 7,
34	4 FRONT	каш	107.	/0		0.00	0.00	81.71	83.58	0.00	/6. /6
		Raw	110.	20		0.00	0.00	84.40	80.82	0.00	73.45
		Raw	107.	00		0.00	0.00	81. 32	80. 60	0.00	73. 31
		Ave	108.	30+/-	2%	0.00+/- 0%	0.00+/- 0%	82,48+/- 2%	81.67+/- 2%	0.00+/- 0%	74.51+/- 3%
		Beta	33.	79		0.00	0.00	7.97	7.16	0.00	0.00
		Ratio	1.	00		0. 0000	0. 0000	0. 2358	0.2119	0. 0000	
à	BACH	Day				0.00	0.00	75.02	10.05	ā 00	74.00
3	+ BACK	Raw	71.	42#		0.00	0.00	72.36	67. 73# (E. 0/ -	0.00	74.02
		Raw	78.	78		0.00	0.00	/1.46	03.26*	0.00	
		Raw	82.	48		0.00	0.00	66.48	77.79*	0.00	/3.66
		Ave	80	73+/-	3%	0.00+/- 0%	0.00+/- 0%	70.10+/- 5%	0.00+/- 9%	0.00+/- 0%	74.88+/- 1%
		Beta	5.	85		0.00	0.00	0.00	0.00	0.00	0.00
		Ratio	1.	00		0.0000	0.0000	0.0000	0.0000	0.0000	

. . . .

SUMMARY OF DOSIMETER READINGS

(* indicates a rejected flier)

. . . .

. -

,

•

SUMMARY OF DOSIMETER READINGS

ε

-

.

.

	Dosimeter		MYL	AR #1		. 005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
			(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
	36 FRONT	Raw	59	7. 92		0.00	0.00	45. 37	40. 76	0.00	40. 32
		Raw	53). 32 *		0.00	0.00	44. 19	40.34	0.00	41.48
		Raw	57	. 22		0. 00	0. 00	48. 39	42.85	0.00	44. 03
		A.v.a	50	57./-		0 00+/- 07	0.00+/07	45 00+/- 57	41 22+/- 27	0.00+/- 07	A1 0A+/- 57
		Dete			34	0.00+7= 0%	0.00+/- 0%	4.04	41. 32+7= 3%	0.00+/~ 0%	41, 74+/- JA
		Deta		0.00		0.000	0.00	0 2420	0.00	0.00	0.00
		Ratio		. 00		0.0000	0.0000	0.2430	0.0000	0.0000	
-										0.00	
	JO BAUN	каш	40			0.00	0.00	36.31	33. 52	0.00	36. 62
		Raw	36	9. 94		0.00	0.00	35.00	32. 92	0.00	32.20*
		Raw	36	8.08		0.00	0.00	36. 45	32. 55	0.00	37.02
		Ave	39	. 28+/-	47	0.00+/- 0%	0.00+/- 0%	35. 92+/- 2%	33.00+/- 1%	0.00+/- 0%	36.82+/- 1%
		Beta	-	2. 46		0.00	0.00	0.00	0.00	0.00	0.00
		Ratio	1	. 00		0. 0000	0. 0000	0. 0000	0.0000	0.0000	
	37 FRONT	Raw	210). 40		0.00	0.00	168.80	164.80	0.00	154.10
		Raw	210). 90		0.00	0.00	173.70	160. 50	0.00	146.30
		Raw	216	. 30		0.00	0. 00	171. 50	155.80	0.00	149.10
		Ave	212	2. 53+/-	2%	0.00+/- 0%	0.00+/- 0%	171.33+/- 1%	160. 37+/- 3%	0.00+/- 0%	149.83+/- 3%
		Beta	62	2.70		0.00	0.00	21.50	10. 53	0.00	Ó. OO
		Ratio	1	. 00		0. 0000	0. 0000	0. 3429	0.1680	0.0000	
	37 BACK	Raw	950). 70		0.00	0.00	220.40	244.90	0.00	169.30
		Raω	819	7.60		0.00	0.00	224.60	254.90	0.00	157.80
		Raw	866	5. 60		0.00	0. 00	223. 70	235.00	0.00	165.60
		Ave	87E	97+/-	8%	0.00+/- 0%	0.00+/- 0%	222.90+/- 1%	244. 93+/- 4%	0.00+/- 0%	164.23+/- 4%
		Beta	714	1.73		0.00	0.00	58.67	80.70	0.00	0.00
		Ratio	1	. 00		0. 0000	0.0000	0. 0821	0. 1129	0.0000	
	39 FRONT	Raw	67	. 74		0.00	0.00	56.82	56. 64	0.00	57. 91
		Raw	69	2. 20		0.00	0.00	56. 25	60. 37	0.00	55.00
		Raw	. 74	58*		0.00	0.00	60. 79	58. 84	0.00	53. 71
		Ave	68	3. 47+/-	2%	0.00+/- 0%	0.00+/- 0%	57.95+/- 4%	58.62+/- 3%	0.00+/- 0%	55.54+/- 4%
		Beta	12	2. 93		0.00	0.00	2.41	3.08	0.00	0.00
		Ratio	1	. 00		0.0000	0.0000	0. 1866	0.2379	0.0000	
	39 BACK	Raw	68	3. 23*		0.00	0.00	55. 55	54. 12	Ö. 00	54.36
		Raw	62	2. 86		0.00	0.00	57. 22	52.75	0.00	51.81
		Raw	61	. 50		0.00	0.00	50.80*	57.78	0.00	58.85*
		Ave	62	2. 18+/-	2%	0.00+/- 0%	0.00+/- 0%	56. 39+/- 2%	54.88+/~ 5%	0.00+/- 0%	53.09+/- 3%
		Beta	9	2.10		0.00	0.00	3.30	1.80	0.00	0.00
		Ratio	1	00		0.0000	0.0000	0.3628	0.1977	0.0000	

(* indicates a rejected flier)

SUMMARY OF DOSIMETER READINGS

Dosimeter	•	MYL	AR #1		.005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	.125" #7
		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
		240	E0		0.00	0.00	204 40	104 20	0.00	
40 FRUN	п каш	260	. 50		0.00	0.00		100.20	0.00	213. 50
	Raw	269	. 20		0.00	0.00	190.40	197. 50	0.00	187.60*
	Raw	594	20		0,00	0.00	187.60	174.60	0.00	214.00
	Ave	266	30+/-	2%	0.00+/- 0%	0.00+/- 0%	187.00+/- 1%	192.77+/- 3%	0.00+/- 0%	213 75+/- 0%
	Reta	52	55		0.00	0.00	0.00	0.00	0.00	0.00
	Patie	1	00		0.000	0 0000	0,000	0 0000	0 0000	0.00
			. 00		0.0000	0.0000	0.0000	0.0000	0.0000	
AO BACK	Paul	1470	00		0.00	0.00	200 00	254 20	0.00	228 20
TO BACK	Dave	1304	. 00		0.00	0.00	205 20	234.30	0.00	236.20
		1300	. 00		0.00	0.00	305.30	2/3.30	0.00	220.20
	каψ	1934	. 00		0.00	0.00	276.40	253.70	0.00	228.60
	Ave	1501	00+/-	9%	0.00+/- 0%	0.00+/- 0%	296.83+/- 3%	261.17+/- 5%	0.00+/- 0%	231.00+/- 3%
	Beta	1270	00		0.00	0.00	65.83	30, 17	0.00	0.00
	Ratio	1	00		0.0000	0.0000	0.0518	0.0238	0.0000	
41 ERONT	Rau	509	60		0.00	0.00	445 50	483 50	0.00	463 10
41 1 1 1 1 1	Rau	502	80		0.00	0.00	405.50	479 10	0.00	474 50
	Raw	523	50		0.00	0.00	445 60	502 80	0.00	478 20
		JED			0.00	V. VV	440.00	JUE, 00	0.00	4/0.20
	Ave	511	97+/-	2%	0.00+/- 0%	0.00+/- 0%	455.55+/- 3%	488.47+/- 3%	0.00+/- 0%	471.93+/~ 2%
	8eta	40	03		0.00	0.00	0.00	16. 53	0.00	0.00
	Ratio	1	00		0.0000	0.0000	0.0000	0. 4130	0.0000	
41 BACK	Raw	556	90		0 00	0 00	489 70	469 10	0 00	465 30
	Raw	547	10		0.00	0.00	470 70	460 10	0.00	450 10
	Raw	577	80		0 00	0 00	478 70	423 90#	0.00	457 60
		0,,,			0.00	0.00	470.70	420. 704	0.00	407.00
	Ave	560	60+/-	3%	0.00+/- 0%	0.00+/- 0%	479.70+/- 2%	464.60+/- 1%	0.00+/- 0%	458.00+/- 2%
	Beta	102	60		0.00	0.00	21, 70	6. 60	0.00	0.00
	Ratio	1.	00		0.0000	0.0000	0. 2115	0.0643	0.0000	
43 FRONT	Raw	146	10		0.00	0.00	91.14¥	79 14	0.00	82.74
	Raw	141	80		0 00	0.00	83 90	82 48	0.00	86.55
	Raw	140	50		0.00	0.00	83.46	91.10¥	0.00	79.24
•	Ave	142	80+/-	2%	0.00+/- 0%	0.00+/- 0%	83.68+/- 0%	80. 81+/- 3%	0.00+/- 0%	82.84+/- 4%
	Beta	59	96		0.00	0.00	0.84	0.00	0.00	0.00
	Ratio	1	00		0. 0000	0.0000	0.0140	0.0000	0.0000	
43 BACK	Raw	104	10		0.00	0.00	81.26	74, 42	0.00	78.38
	Raw	9 B	02		0.00	0.00	78.62	76.22	0.00	74. 53
	Raw	99	82		0.00	0.00	75.18	70.88	0.00	75. 64
									0.00	
	Ave	100	65+/-	3%	0.00+/- 0%	0.00+/- 0%	78.35+/- 4%	73.84+/- 4%	0.00+/- 0%	76.18+/- 3%
	Beta	24	46		0.00	0.00	2.17	0.00	0.00	0.00
	Ratio	1.	00		0. 0000	0.0000	0. 0887	0.0000	0.0000	

е к **к**

(* indicates a rejected flier)

. . , , ,

.

.

BOUNDART OF DUSTNETER READINGS	SUMMARY	OF	DOSIMETER	READINGS
--------------------------------	---------	----	-----------	----------

•

.

.

.

Dosimeter		MYL	AR #1	. 005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
•••••		()	nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
•									
44 FRONT	Raw	151	90	0. 00	0.00	92. 25	96. 26	0.00	88. 58
	Raw	150	40	0. 00	0.00	92.07	94. 73	0.00	95.34
	Raw	143	60	0.00	0.00	92. 46	96.04	0.00	94. 45
	A	140	47+/- 7Y	0 00+/- 07	0 00+/- 07	92 244/- 07	05 404/- 17	0.00+/- 07	90 70+/- AV
	Bata	140.	04	0.00+/- 0%	0.00+/- 0%	72.2017-04	75.00+7-14	0.00+/- 0%	72.77+7-4%
	Deta Deta			0.00	0.00	0.00	2.07	0.00	0.00
	Ratio	1	, UU	0.0000	0.0000	0.0000	0.0517	0.0000	
44 BACK	каш	388.	. 70	0.00	0.00	110.10	107.00	0.00	89.91
	Raw	368	. 30	0.00	0.00	110.10	102.10	0.00	88.09
	Raw	364	80	0. 00	0.00	122. 70*	102.10	0.00	91. 73
	Ave	373	93+/- 3%	0. 00+/- 0%	0.00+/- 0%	110.10+/- 0%	103 73+/- 3%	0.00+/- 0%	89. 91+/- 2%
	Beta	284	02	0.00	0.00	20.19	13.82	0.00	0.00
	Ratio	1	00	0.0000	0. 0000	0.0711	0. 0487	0.0000	
45 FRONT	Raw	112	80	0.00	0.00	81.73	81.45	0.00	73.35
	Raw	103	00*	0.00	0.00	82.56	82.06	Ó. OO	76.77
	Raw	112	70	0.00	0. 00	78.13	80. 69	0.00	75.88
	A v.	112	75+/- 07	0 00+/- 0%	0 00+/- 07	80 81+/- 37	81 40+/- 17	0 00+/- 07	75 33+/- 27
	Bota	37	40	0.00	0.00	5 47	6.07	0.00	0.00
	Datia		00	0.000	0.000	0 1447	0 1431	0.000	0.00
	Ratio	1		0.0000	0.0000	0. 1463	0. 1821	0.0000	
AE DACK	David	04				71 / 1		<u> </u>	20.00
45 BACK	Raw	80.	81	0.00	0.00	76.67	71.03	0.00	73.33
	Raw	82	. /1	0.00	0.00	//. 62	77.00	0.00	76.88
	каш	87.	. 19	0.00	0.00	76.32	/2.18	0.00	/3.04
	Ave	85.	57+/- 3%	0.00+/- 0%	0.00+/- 0%	76.86+/- 1%	73. 40+/- 4%	0.00+/- 0%	74.42+/- 3%
	Beta	11	15	0. 00	0.00	2.45	0.00	0.00	0.00
	Ratio	1.	. 00	0. 0000	0.0000	0. 2194	0.0000	0. 0000	
46 FRONT	Raw	275	20	0.00	0.00	185. 50	172.30	0.00	176. 90
	Raw	208.	. 00	0.00	0.00	194.60	166.20	0.00	166.60
	Raw	307	50	0.00	0.00	184. 80	157.80	0. 00	178. 30
	Ave	263	57+/-19%	0.00+/- 0%	0.00+/- 0%	188. 30+/- 3%	165. 43+/- 4%	0.00+/- 0%	173. 93+/- 4%
	Beta	89	63	0.00	0.00	14. 37	0.00	0.00	0.00
	Ratio	1.	. 00	0.0000	0.0000	0.1603	0.0000	0.0000	
46 BACK	Ŕau	1238	òo	0. 00	0.00	228.10	196. 40	0.00	163. 50
	Raw	1185	. 00	0.00	0.00	216. 50	193.80	0.00	167. 30
	Raw	1127	. 00	0. 00	0. 00	214. 30	204.10	0.00	160. 30
	Ave	1183	33+/- 5%	0.00+/- 0%	0.00+/- 0%	219.63+/- 3%	198.10+/- 37	0 00+/- 0%	164 37+/- 3%
	Reta	1018	97	0.00	0.00	55 27	33 73	0.00	0.00
	Ratio	1010	00	0.0000	0.0000	0.0542	0 0331	0.000	
	Re 10	1.		0.0000	0.0000	0.0042	0.0331	0.0000	

(# indicates a rejected flier)

.

020" #4 032" #5 Dosimeter MYLAR #1 005" #2 010" #3 064" #6 125" #7 (nc) (nc) (nc) (nc) (nc) (nc) (nc) 48 FRONT Raw 0.00 0.00 56. 97 68.67 51.87 0.00 53. 4B 65.01 0.00 0.00 53. 30 54.05 Raw 0.00 47.38# 0.00 Raw 68.39 0.00 55.67 54.06 0,00 51.97 67.36+/- 3% 0.00+/- 0% 0.00+/- 0% 55. 31+/- 3% 53. 33+/- 2% 0.00+/- 0% 52.74+/- 2% Ave Beta 14.62 0.00 0. 00 2. 58 0.59 0.00 0.00 Ratio 1.00 0.0000 0.0000 0.1763 0.0405 0.0000 48 BACK Raw 61.67 0.00 0.00 50.13 51. 52 0.00 51.22 Raw 57.63 0.00 0.00 51.74 48.31 0.00 47.94 Raw 52. 56 0.00 0.00 52.70 51.01 0.00 50. B4 Ave 57. 29+/- 8% 0.00+/- 0% 0.00+/- 0% 51. 52+/- 3% 50.28+/- 3% 0.00+/- 0% 50.00+/- 4% Beta 7.29 0.00 0.00 1.52 0.28 0.00 0.00 Ratio 1.00 0.0000 0.0000 0.0384 0. 2091 0.0000 49 FRONT Raw11710.00 0.00 0.00 3781.00 5838.00 0.00 4711.00 Raw12600.00 0.00 0.00 4425.00* 5897.00 0.00 5550.00 Raw14610.00 0.00 0.00 4107.00 4400.00* 4269.00 0.00 Ave12973. 33+/-11% 0.00+/- 0% 0.00+/- 0% 4044.00+/- 2% 5867. 50+/- 1% 0.00+/- 0% 4843.33+/-13% Beta 8130.00 0.00 0.00 0.00 1024.17 0.00 0.00 0. 0000 Ratio 1.00 0.0000 0.0000 0.1260 0. 0000 49 BACK Raw49580.00 0.00 0.00 10820.00 7611.00 0.00 3949.00 Raw53970.00 0.00 0.00 10490.00 7059.00 3597.00 0.00 Rau47020.00 0.00 0.00 9225.00* 7497.00 3720.00 0.00 Ave50190.00+/~ 7% 0.00+/- 0% 0.00+/- 0% 10655.00+/- 2% 7389.00+/- 4% 0.00+/- 0% 3755.33+/- 5% Beta46434.67 0.00 0.00 6899.67 3633.67 0.00 0, 00 0. 0000 Ratio 1.00 0.0000 0.1486 0.0783 0.0000 50 FRONT Raw 386, 70 280.10 0.00 0.00 275.00 0.00 288.00 Raw 383. 90 0.00 0.00 278.80 263.50 267.10 0.00 Raw 362.30 0.00 0.00 268.10 232.70* 0.00 284. 50 Ave 377 63+/- 4% 0.00+/- 0% 0.00+/- 0% 270. 57+/- 3% 271.05+/- 2% 0.00+/- 0% 283.77+/- 2% Beta 93, 87 0 00 0.00 0.00 0.00 0.00 0.00 Ratio 1.00 0. 0000 0.0000 0.0000 0.0000 0.0000 50 BACK Raw 2136.00 0. 00 0.00 332.30 355.60 0.00 278.30 Raw 1991.00 0.00 0.00 370.10 308. 00 294.70 0.00 Raw 2049.00 0.00 0.00 360.40 338. 60 0.00 269.70 Ave 2058. 67+/- 4% 0.00+/- 0% 0.00+/- 0% 362.03+/- 2% 326. 30+/- 5% 0.00+/- 0% 280.90+/- 5% Beta 1777.77 0.00 0.00 81.13 45.40 0.00 0.00 Ratio 1.00 0. 0000 0.0000 0.0456 0. 0255 0.0000

SUMMARY OF DOSIMETER READINGS

(* indicates a rejected flier)

II.14

* * *

.

.

•

•

SUMMARY OF DOSIMETER READINGS

-

.

4

Dosimeter		MYLAR #1	. 005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
51 FRONT	Raw	112.80	0.00	0.00	92.28	83, 42	0.00	79.07
	Raw	116 80	0.00	0.00	89 51	82 22	0.00	75 09
	Raw	116.90	0.00	0.00	88 47	85 48	0.00	79 23
	New .	110.00	0.00	0.00	00. 1/	03. 40	0.00	17.23
	Ave	115. 47+/- 2%	0.00+/- 0%	0.00+/- 0%	90.09+/- 2%	83. 71+/- 2%	0.00+/- 0%	77.80+/- 3%
	Beta	37, 67	0.00	0.00	12, 29	5. 91	0.00	0.00
	Ratio	1.00	0.0000	0. 0000	0. 3263	0. 1569	0.0000	
51 BACK	Raw	82. 62	0.00	0.00	81.68	70.00	0.00	79.42
	Raw	78.50	0.00	0.00	81.37	74. 23	0.00	76. 53
	Raw	90.15	0.00	0.00	77.99	77.28	0.00	73. 61
	Ave	83 76+/- 7%	0 00+/- 0%	0.00+/07	80 35+/- 3%	73 84+/- 5%	0 00+/- 07	76 52+/- 47
	Rete	7 24	0.00	0.00	3.83	0.00	0.00	0.00
	-63472	- 1 00		0.000	0 5288	0.000	0.00	0.00
		1.00	0.0000	0.0000	V. JE00	0.0000	0.0000	
50 ERONT	Bau	1 57	0.00	0.00	1.74	1 20	0.00	1.24
JZ PRUNI	Raw	1.55	0.00	0.00	1.24	1.28	0.00	1.34
	кач	1.61	0.00	0.00	1.30	1.18	0.00	1.28
	Кам	1. 51	0.00	0.00	1.26	1.28	0,00	1.26
	Ave	1.55+/- 3%	0.00+/- 0%	0.00+/- 0%	1.26+/- 2%	1.25+/- 4%	0.00+/- 0%	1.29+/- 3%
	Beta	0.25	0 00	0.00	0.00	0.00	Ô. 00	0.00
	Ratio	1.00	0 0000	0 0000	0 0000	0 0000	0 0000	
			0.0000	0.0000	0.0000	0.0000	0.0000	
52 BACK	Raw	2 05		0.00	1 37	1 35	0.00	1 24
JE DHUN	Date	2.00	0.00	0.00	1.09	1 30	0.00	1.24
	Dave	2.07	0.00	0.00	1.27	1.30	0.00	1.50
	Raw	£.04*	0.00	0.00	1.20	1.25	0.00	1.24
	Ave	2.07+/- 2%	0.00+/- 0%	0.00+/- 0%	1.31+/- 4%	1.30+/- 4%	0.00+/- 0%	1.26+/~ 3%
	Beta	0.81	0.00	0.00	0.05	0.04	0.00	0.00
	Ratio	1.00	0.0000	0. 0000	0. 0627	0. 0478	0.0000	
53 FRONT	Raw	1.45	0.00	0.00	1.25	1.06*	0.00	1.12
	Raw	1.37	0.00	0.00	1. 24	1.18	0.00	i. 15
	Raw	1. 39	0.00	0.00	1.23	1.15	0.00	1.10
	Ave	1 40+/- 34	$0.00 \pm (0)$	0.00+/- 0%	1 74+/- 17	1 174/- 78	0.001/- 0%	1 12+/- 28
	Dete	1.407/- 3%	0.00+7= 0%	0.00+7-04	1.297/- 14	1. 1/7/- 24	0.00+/- 0%	1.127/- 24
	deta	0.28	0.00	0.00	0.12	0.04	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0.4143	0.1500	0.0000	
50 D.400	D		ā 00	0.00				1.01
33 BACK	Raw	1.44*	0.00	0.00	1.18	1. 10	0.00	1.04
	Raw	1.58	0.00	0.00	1.12	1.04#	0.00	1.20*
	Raw	1. 57	0.00	0.00	1.12	1.18	0.00	1.08
	Ave	1.57+/- 0%	0.00+/- 0%	0.00+/- 0%	1. 14+/- 3%	1. 17+/- 1%	0.00+/- 0%	1.06+/- 3%
	Beta	0. 51	0.00	0.00	0.08	0.11	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0.1530	0.2140	0.0000	

(* indicates a rejected flier)

Dosimeter		MYLAR #1	. 005" #2	, 010" #3	. 020" #4	, 032" #5	.064" #6	. 125" #7
		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
54 FRONT	Raw	1.13	0.00	0.00	1.15	1.10#	0.00	1.07
	Raw	1.17	0.00	0.00	1.21	1. 22	0.00	1.11
	Raw	1.31	Q. 00	0.00	1, 10	1.16	0.00	1. 10
	Ave	1 21+/- 87	0 00+/- 07	0.00+(0)	1 164/- 57	1 194/- 27	0.00+/07	1 09+/- 77
	Bata	1. 21+7 - 0A	0,000	0.000	0.04	0.10	0.00+/- 0%	1.07+/- 24
	Deta	1.00	0.00	0.00	0.00	0.10	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0.3412	0.8588	0.0000	
54 BACK	Baw	1 70	0.00	0.00	1 1 4	1 14	0.00	1 15
JA BACK	Daw	1.37	0.00	0.00	1.14	1.10	0.00	1.15
	David	1.37	0.00	0.00	1.13	1.21	0.00	1.10
	каш	1.48	0.00	0.00	1.14	1. 12	0.00	1.12
	Ave	1.41+/- 4%	0.00+/- 0%	0.00+/- 0%	1.14+/- 1%	1.16+/- 4%	0.00+/~ 0%	1.12+/- 2%
	Beta	0.29	0.00	0.00	0.01	0. 04	0.00	0.00
	Ratio	1.00	0. 0000	0. 0000	0. 0463	0. 1389	0. 0000	
	_							
55 FRONT	Raw	2.48	0.00	0.00	1.65	1. 63	0.00	1.58
	Raw	1.71*	0.00	0.00	1.57	1.50	0.00	1.70
	Raw	2.54	0.00	0.00	1. 59	1. 73	0.00	1.63
	Ave	2. 51+/- 2%	0.00+/- 0%	0.00+/- 0%	1.60+/- 3%	1.62+/- 7%	0.00+/- 0%	1.64+/- 4%
	Beta	0.87	0.00	0.00	0.00	0.00	0.00	0.00
	Ratio	1.00	0. 0000	0.0000	0.0000	0.0000	0.0000	
55 BACK	Raw	2.01	0.00	0.00	1. 59	1.54	0.00	1.54
	Raw	2.22	0.00	0.00	1.61	1.51	0.00	1. 54
	Raw	2. 53	0.00	0.00	1. 63	1. 50	0.00	1.43
	Ave	2,25+/-12%	0.00+/- 0%	0.00+/~ 0%	1.61+/- 1%	1.52+/- 1%	0.00+/- 0%	1.50+/- 4%
	Beta	0.75	0.00	0.00	0.11	0.02	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0. 1474	0. 0231	0. 0000	
56 FRONT	Raw	2.29	0.00	0.00	1.54	1.67	0.00	1. 50
	Raw	2.17	0.00	0.00	1.65	1.72	0.00	1.44
, <u>-</u>	Raw	2.44	0.00	0.00	1.66	1.62	0.00	1. 53
	Ave	2. 30+/- 6%	0.00+/- 0%	0.00+/- 0%	1.61+/- 47	1.67+/- 3%	0.00+/- 0%	1.49+/- 3%
	Beta	0.81	0.00	0.00	0.12	0.18	0.00	0.00
	Ratio	1.00	0.0000	0 0000	0 1535	0 2211	0 0000	
			5. 0000	0.0000	0.1000	J. 6611	0.0000	
56 BACK	Raw	2.28	0.00	0.00	1.60	1 38	0.00	1 53
	Raw	2 21	0.00	0.00	1 58	1 42	0.00	1 35#
	Raw	2.44	0.00	0.00	1. 59	1. 54*	0.00	1. 51
	Ave	2 31+/- 5%	0 00+/- 07	0 00+/- 07	1 59+/- 17	1 40+/- 2%	0 00+/- 07	1 52+/- 17
	Beta	0 79	0.00	0.00	0.07	0.00	0.00+/= 0%	0.00
	Ratio	1.00	0.000	0.00	0.07	0.00	0.00	v. vv
	1.0110	1.00	0.0000	0.0000	0.0901	0.0000	0.0000	

. . . .

SUMMARY OF DOSIMETER READINGS

(* indicates a rejected flier)

· ·

•

٠
.

	Dosimeter		MYLAR #1	. 005" #2	. 010" #3	. 020" #4	. 032" #5	.064" #6	. 125" #7
			(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
	57 ERONT	Paul	3 49	0.00	0.00	1 74	1 48	0.00	1.12
	or Prom	Daw	2. 47	0.00	0.00	1. /4	1,60	0.00	1.02
		Raw	2.03	0.00	0.00	1.00	1.68	0.00	1. 56
-	····	Raw	2.60	0.00	0, 00	1.83	1. 72	0.00	1.58
		Ave	2. 54+/- 2%	0.00+/- 0%	0.00+/- 0%	1.75+/- 5%	1.69+/- 1%	0.00+/- 0%	1.59+/- 2%
		Beta	0.96	0.00	0.00	0.16	0.11	0.00	0.00
		Ratio	1.00	0.0000	0. 0000	0. 1675	0. 1104	0.0000	
	57 BACK	Raw	2 94	0.00	0.00	1 74	1 67	0.00	1 50+
		Raw	2 78	0.00	0.00	1 49	1.67	0.00	1.60*
		Dave	2.10	0.00	0.00	1.00	1.02	0.00	1.0/
		каш	J. 12	0.00	0.00	1. /4	1.61	0.00	1.61
		Ave	2.95+/- 6%	0.00+/- 0%	0.00+/- 0%	1.72+/- 2%	1.63+/- 2%	0.00+/- 0%	1.64+/- 3%
		Beta	1.31	0.00	0.00	0.08	0.00	0.00	0.00
		Ratio	1.00	0.0000	0.0000	0.0616	0.0000	0.0000	

SUMMARY OF DOSIMETER READINGS

.

•

.

· · · · · ·

The second s

(* indicates a rejected flier)

11.17

*** RESULTS ***

CALCULATED DOSES

· · · ·

Dosimeter		c	alibration	Factors			Mular Chip	Calcula	ted Beta	Calculat	ed Gamma
	. 005"	. 010"	. 020"	. 032"	. 064"	Ave.	Reading	Dose	Error	Dose	Error
	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(nc)	(rad)	(rad)	(rad)	(rad)
1 FRONT	0, 00	0. 00	0. 45	0. 98	0.00	0. 72	14.82	10. 65	5.80	14.07	1, 32
1 BACK	0.00	0.00	0. 99	0. 99	0.00	0. 99	38.04	37. 67	35.89	19.64	3. 48
2 FRONT	0, 00	0.00	0. 99	0. 36	0.00	0. 67	48. 43	32. 67	26. 53	159.01	14. 87
2 BACK	0.00	0.00	0. 62	0.86	0.00	0.74	709. 53	524.15	125. 76	174.47	16. 38
3 FRONT	0.00	0.00	0.76	0.83	0.00	0. 79	299. 70	238. 05	16. 32	44. 87	4.46
3 BACK	0.00	0.00	0. 99	0. 99	0.00	0.99	0.00	0. 00	0.00	47. 98	4. 49
4 FRONT	0.00	0.00	0.88	0. 94	0.00	0. 91	443.12	401, 97	25.80	32.69	3. 16
4 BACK	0.00	0.00	0. 99	0. 99	0.00	0. 99	0.00	0.00	0.00	39.74	3. 90
5 FRONT	0.00	0.00	0.85	0. 98	0.00	0. 92	162. 43	148. 65	77.18	39. 81	3.76
5 BACK	0.00	0. 00	0. 99	0. 99	0.00	0. 99	9.60	9, 50	6. 59	44. 73	4. 37
6 FRONT	0.00	0.00	0.88	0. 99	0.00	0. 93	102.73	95.85	23. 92	112.61	11.26
6 BACK	0.00	0.00	0.86	0.85	0.00	0.86	1235. 25	1056.22	22.86	120. 12	11.17
7 FRONT	0.00	0. 00	0.99	0.99	0.00	0. 99	55.68	55. 13	20.83	114. 50	11.44
7 BACK	0.00	0.00	0.82	0. 90	0. 00	0.86	1021.17	882. 73	70.81	123.37	11.70
8 FRONT	0.00	0.00	0. 64	0.75	0.00	0. 70	45. 43	31. 70	6. 58	109.25	10. 21
8 BACK	0.00	0.00	0. 90	0.83	0.00	0.87	1333. 77	1156. 39	79.11	126, 58	11.89
9 FRONT	0.00	0. 00	0. 35	0. 35	0.00	0. 35	57. 35	20. 14	9. 65	190. 33	18. 23
9 BACK	0.00	0.00	0. 98	0. 99	0.00	0. 98	3420.77	3362. 59	1092. 07	224. 37	21. 21
10 FRONT	0.00	0.00	0.61	0. 72	0.00	0. 66	0.07	0. 05	0. 02	0. 22	0. 02
10 BACK	0.00	0. 00	0. 35	0.87	0.00	0. 61	0.08	0. 05	0. 03	0. 22	0. 02
11 FRONT	0.00	0.00	0. 99	0. 99	0.00	0. 99	0.00	0.00	0. 00	92. 70	9.17
11 BACK	0.00	0.00	0. 99	0. 99	0. 00	0. 99	0.00	0.00	0. 00	98.66	9.33
12 FRONT	0.00	0.00	0.35	0. 35	0.00	0. 35	67. 77	23. 79	9.44	63. 37	6.02
12 BACK	0.00	0.00	0.85	0. 99	0.00	0. 92	148. 63	136.74	85. 24	69. 27	6. 60
13 FRONT	0.00	0.00	0.76	0.88	0.00	0.82	86.02	70.60	7.42	23. 42	2. 20
13 BACK	0.00	0.00	0. 99	0. 99	0.00	0. 99	. 20.22	20. 02	2. 35	23. 75	2. 23
14 FRONT	0.00	0.00	0.46	0. 67	0.00	0. 57	64. 37	36. 53	15.47	84. 90	8.12
14 BACK	0.00	0.00	0. 99	0. 35	0.00	0. 67	8. 50	5. 70	12.06	82. 26	8.03
15 FRONT	0.00	0.00	0. 35	0. 98	0.00	0. 66	1611.83	1069. 78	713. 26	322. 59	31.41
15 BACK	0.00	0.00	0. 35	0. 99	0.00	0. 67	3286. 33	2203. 82	1487.14	390.86	36. 78
16 FRONT	Ő. 00	0.00	0. 54	0. 35	0.00	Ŏ. 44	37. 60	16. 73	5. 88	85. 83	8. 06
16 BACK	0.00	0.00	0.66	0.35	0.00	0.51	59.87	30.41	14.78	85. 23	8.48

.

•

		*	** RESULTS	***		•		CALCUL	ATED DOSES		
Dosimeter			Calibration	Factors			Mylar Chip	Calculated Beta		Calculated Gamma	
	. 005"	. 010"	. 020"	. 032"	. 064"	Ave.	Reading	Dose	Error	Dose	Error
	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(nc)	(rad)	(rad)	(rad)	(rad)
17 FRONT	0.00	0.00	0. 82	0. 91	0, 00	0.87	0. 23	0. 20	0. 05	0. 29	0. O3
17 BACK	0.00	0.00	0. 99	0. 99	0.00	0. 99	0. 17	0. 17	0. 05	0.30	0. 03
18 FRONT	0. 00	0.00	0. 99	0. 91	0.00	0. 95	98.80	94.08	42.00	138.81	16. 30
18 BACK	0.00	0.00	0.90	0.82	0.00	0.86	473. 37	406. 94	292. 73	133. 34	12.41
19 FRONT	0.00	0.00	0. 35	0. 35	0. 00	0.35	286. 60	100. 63	7.73	0.00	0.00
19 BACK	0,00	0.00	0. 99	0. 99	O. OO	0. 99	89. 57	88. 68	7, 24	57. 51	5. 47
21 FRONT	Q. 00	0.00	0.86	0. 61	0.00	0. 74	61.40	45. 15	13. 51	61.13	6. 24
21 BACK	0, 00	0.00	0. 97	0. 99	0.00	0. 98	760. 30	742. 74	136. 99	60. 78	5.75
23 FRONT	0.00	0.00	0. 99	0. 99	0.00	0. 99	0.00	0.00	0.00	767.44	71.71
23 BACK	0.00	0.00	0. 35	0. 35	0.00	0.35	3381.00	1187.07	90. 92	788. 10	77.03
25 FRONT	0.00	0.00	0.99	0.35	0.00	0.67	38.80	26. 02	28.41	214.80	21.36
25 BACK	0.00	0.00	0. 45	0. 99	0.00	0.72	114. 13	82. 39	47. 32	196. 37	19. OB
26 FRONT	0.00	0.00	0.84	0.87	0.00	0.86	237. 10	202. 81	13. 97	42. 27	4. 10
26 BACK	0.00	0.00	0. 90	Ó. 99	0.00	0.95	41. 73	39. 51	7. 93	45. 19	4. 53
27 FRONT	0.00	0.00	0.99	0.35	0.00	0.67	11. 37	7.62	5, 86	42, 79	3.99
27 BACK	0.00	0.00	0. 99	0. 99	0.00	0. 99	0.00	0.00	0.00	39. 87	3. 82
29 FRONT	0.00	0.00	0.60	0. 53	0. 00	0. 57	19.29	10. 93	2.06	13.87	1.41
29 BACK	0.00	0.00	0. 69	0. 99	0.00	0.84	5.09	4. 28	2.07	13.09	1.23
30 FRONT	0.00	0.00	0.77	0, 78	0. 00	0. 78	41.73	32. 41	1.14	14. 12	1.35
30 BACK	0.00	0.00	0. 99	0. 99	0.00	0. 99	13.85	13.71	1.46	13.83	1.33
34 FRONT	0.00	0.00	0. 63	0.49	0.00	0. 56	33. 79	19.06	3. 64	17.84	1.72
34 BACK	0.00	0.00	0. 99	0. 99	0. 00	0. 99	5.85	5.80	2.58	17. 93	1.68
36 FRONT	0.00	0.00	0. 62	0.99	0.00	0. 81	16.63	13. 41	4, 83	10.04	1.04
36 BACK	0.00	0.00	0. 99	0.99	0.00	0. 99	2. 46	2. 43	1.41	8. 81	0. 82
37 FRONT	0.00	0.00	0. 47	0. 60	0. 00	0. 53	62.70	33. 52	6. 18	35. 87	3. 47
37 BACK	0.00	0.00	0.87	0. 73	0.00	0.80	714. 73	568. 94	88. 54	39. 32	3. 92
39 FRONT	0. 00	0.00	0.71	0. 43	Ō. OO	0. 57	12.93	7.38	2.86	13.30	1.34
39 BACK	0.00	0.00	0.44	0. 53	0.00	0. 4B	9.10	4. 41	1.13	12.71	1.26
40 FRONT	0.00	0.00	0.99	0. 99	0.00	0. 99	52. 55	52. 03	4.99	51. 17	4.76
40 BACK	0.00	0.00	0. 91	0. 93	0.00	0. 92	1270. 00	1172.42	120. 11	55. 30	5.36
41 FRONT	0.00	0.00	0.99	0.35	0.00	0. 67	40. 03	26. 85	20.13	112.98	10.67
41 BACK	0.00	0.00	0. 67	0. B4	0.00	0.76	102.60	77.48	18.11	109.65	10. 38
43 FRONT	0.00	0.00	0. 97	0. 99	0. 00	0. 98	59.96	58. 73	4. 68	19.83	2.04
43 BACK	0.00	0.00	0.86	0. 99	0.00	0. 92	24.46	22. 58	4. 13	18. 24	1.76

•

•

•

-

.

· .

		**	* RESULTS	***			CALCULATED DOSES						
osimeter		c	alibration	Factors			Mylar Chip	Calcula	ted Beta	Calcula	ted Gamma		
	005"	010"	020"	. 032"	. 064"	Ave.	Reading	Dose	Error	Dose	Error		
	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(nc)	(rad)	(rad)	(rad)	(rad)		
44 FRONT	0.00	0.00	0. 99	0.87	0. 00	0. 93	55. B4	51. 91	7.17	22. 21	2. 25		
44 BACK	0.00	0.00	0.88	0.88	0. 00	0. BB	284. 02	249. 79	11.54	21. 52	2.05		
45 FRONT	0.00	0.00	0. 77	0.61	0.00	0. 69	37.42	25. 82	4, 37	18. 03	1.73		
45 BACK	0. OO	0.00	0.66	0. 99	0.00	0.82	11.15	9. 20	3.76	17. 82	1.73		
46 FRONT	0.00	0.00	0.75	0. 99	0.00	0.87	89. 63	77. 90	47.03	41.64	4.16		
46 BACK	O. OO	0.00	0. 91	0. 91	0.00	0. 71	1018.97	927.68	50.82	37. 35	3. 62		
48 FRONT	0.00	0.00	0. 72	0. 90	0.00	0. 81	14.62	11.84	2. 57	12.62	1. 20		
48 BACK	0.00	0.00	0. 67	0. 90	0.00	0.79	7. 29	5. 74	4.03	11, 97	1.19		
49 FRONT	0. 00	0. 00	0. 99	0. 70	0.00	0.84	8130.00	6851.34	2176. 99	1159.49	189. 45		
49 BACK	0.00	0.00	0. 77	0. 81	0.00	0.79	46434.67	36513.66	3082.13	899. 03	93. 91		
50 FRONT	0.00	0.00	0. 99	0. 99	0.00	0. 99	93.87	92. 94	14.00	67. 93	6. 41		
50 BACK	0.00	0. 00	0. 92	0.93	0.00	0. 93	1777.77	1645. 79	69. 54	67, 25	6. 95		
51 FRONT	0.00	0.00	0. 50	0. 62	0.00	0.56	37. 67	21.10	3. 82	18.62	1.62		
51 BACK	0. 00	0.00	0.35	0. 99	0.00	0.67	7.24	4.85	D. 49	18.32	1.84		
52 FRONT	0.00	0.00	0. 99	0. 99	0.00	0. 99	0. 25	0. 25	0.07	0. 31	0.03		
52 BACK	0, 00	0.00	0. 90	0.88	0.00	0.89	0. 81	0. 72	0. 04	0. 30	0. 03		
53 FRONT	0. 00	0.00	0.36	0.64	0.00	0.50	0. 28	0. 14	0.06	0. 27	0. 03		
53 BACK	0.00	0.00	0.76	0. 49	0.00	0. 62	0.51	0. 32	0.10	0. 25	0.02		
54 FRONT	0.00	0.00	0.35	0.35	0.00	0. 35	0. 11	0. 04	0. 03	0. 26	0. 03		
54 BACK	0.00	0. 00	0. 92	0. 67	0.00	0. 79	0. 29	0. 23	0. 07	0. 27	0. 03		
55 FRONT	0. 00	0.00	0. 99	0. 99	0.00	0. 99	0.87	0.86	0.07	0. 39	0.04		
55 BACK	0.00	0.00	0. 77	0.94	0.00	0.85	0. 75	0. 64	0. 25	0. 36	0. 04		
56 FRONT	0. 00	0.00	0. 76	0. 47	0.00	0.62	0. 81	0. 50	0.19	0.36	0.04		
56 BACK	0.00	0. 00	0.85	0. 99	0.00	0. 92	0. 79	0. 73	0.13	0.36	0.03		
57 FRONT	0.00	0.00	0. 74	0.73	0. 00	0. 73	0. 96	0.70	0. 05	0. 38	0.04		
57 BACK	0.00	0.00	0.90	0.99	0.00	0. 74	1.31	1.23	0.19	0. 39	0.04		

.

• • •

. . . .

*** SUMMARY OF DOSES AND DOSE RATES ***

Dosimeter	Beta	Gamma	Exposure	Beta Dose Rate	Gamma Dose Rate	
	Dose	Dose	Time	Error	Error	
	(rad)	(rad)	(hr)	(rad/hr) (rad/hr)	(rad/hr) (rad/hr)	
1 FRONT	10.65	14.07	288. 0	3. 70E+02 2. 01E-02	4.88E-02 4.57E-03	
1 BACK	37. 67	19.64	288. 0	1. 31E-01 1. 25E-01	6. 82E-02 1. 21E-02	
2 FRONT	32.67	159.01	288.0	1.13E-01 9.21E-02	5. 52E-01 5. 16E-02	
2 BACK	524.15	174.47	288. 0	1.82E+00 4.37E-01	6.06E-01 5.69E-02	
3 FRONT	238.05	44, 87	288.0	8.27E-01 5.67E-02	1.56E-01 1.55E-02	
3 BACK	0.00	47. 98	288. 0	0.00E+00 0.00E+00	1.67E-01 1.56E-02	·
4 FRONT	401.97	32.69	288. 0	1. 40E+00 B. 96E-02	1.13E-01 1.10E-02	
4 BACK	0. 00	39. 74	288. 0	0.00E+00 0.00E+00	1.38E-01 1.36E-02	
5 FRONT	148. 65	37. 81	288.0	5.16E-01 2.68E-01	1.386-01 1.316-02	
5 BACK	9.50	44. 73	288. 0	3. 30E-02 2. 29E-02	1.55E-01 1.52E-02	
6 FRONT	95.85	112.61	288. 0	3.33E-01 8.31E-02	3.91E-01 3.91E-02	
6 BACK	1056. 22	120. 12	288. 0	3. 67E+00 7. 94E-02	4. 17E-01 3. 88E-02	
7 FRONT	55. 13	114.50	288. 0	1.91E-01 7.23E-02	3. 98E-01 3. 97E-02	
7 BACK	882. 73	123. 37	288. 0	3. 07E+00 2. 46E-01	4. 28E-01 4. 06E-02	
8 FRONT	31.70	109.25	288.0	1.10E-01 2.28E-02	3. 79E-01 3. 55E-02	
B BACK	1156. 39	126. 58	288. 0	4. 02E+00 2. 75E-01	4.40E-01 4.13E-02	
9 FRONT	20. 14	190. 33	288. 0	6. 99E-02 3. 35E-02	6.61E-01 6.33E-02	
9 BACK	3362. 59	224. 37	268.0	1. 17E+01 3. 79E+00	7.79E-01 7.36E-02	
10 FRONT	0.05	0. 22	1.0	4. 59E-02 2. 02E-02	2. 21E-01 2. 06E-02	
10 BACK	0. 05	0. 22	1.0	4. 90E-02 3. 33E-02	2. 19E-01 2. 05E-02	
11 FRONT	0.00	92. 70	148. 2	0.00E+00 0.00E+00	6. 25E-01 6. 19E-02	
11 BACK	0.00	98. 66	148.2	0.00E+00 0.00E+00	6.66E-01 6.30E-02	
12 FRONT	23. 79	63. 37	148.2	1. 61E-01 6. 37E-02	4. 28E-01 4. 06E-02	
12 BACK	136.74	69. 27	148.2	9. 23E-01 5. 75E-01	4. 67E-01 4. 45E-02	
13 FRONT	70. 60	23. 42	148. 2	4.76E-01 5.01E-02	1.58E-01 1.48E-02	
13 BACK	20. 02	23. 75	148. 2	1.35E-01 1.59E-02	1.60E-01 1.51E-02	
14 FRONT	36. 53	84. 90	148.2	2.47E-01 1.04E-01	5.73E-01 5.48E-02	
14 BACK	5. 70	82. 26	148. 2	3.85E-02 8.13E-02	5.55E-01 5.42E-02	
15 FRONT	1069. 78	322. 59	148. 2	7. 22E+00 4. 81E+00	2. 18E+00 2. 12E-01	
15 BACK	2203. 82	390.86	148. 2	1. 49E+01 1. 00E+01	2. 64E+00 2. 48E-01	
16 FRONT	16.73	85. 83	148. 2	1.13E-01 3.97E-02	5. 79E-01 5. 44E-02	
16 BACK	30.41	85. 23	148.2	2.05E-01 9.98E-02	5.75E-01 5.72E-02	

• •

The second se

.

• •

*** SUMMARY OF DOSES AND DOSE RATES ***

	Dosimeter	Beta	Gamma	Exposure	Beta Dose R	ate	Gamma Dos	e Rate		
		Dose	Dose	Time		Error		Error		
		(rad)	(rad)	(hr)	(rad/hr) (r	ad/hr)	(rad/hr)	(rad/hr)		
	17 EPONT	0.20	0 29	1.0	1 97E-01 5 2	AF-02	2 89E-01 3	3 01E-02		
	17 BACK	0.20	0.27	1.0	1 735-01 4 5	3E-02	3.01E-01	2. 88E-02		
	I/ BACK	0.17	0.30	1.0	1.756 01 4.0		3. 012 01 1			
	18 FRONT	94.08	138.81	148.2	6.35E-01 2.8	3E-01	9. 37E-01	1. 10E-01		
	18 BACK	406.94	133.34	148.2	2.75E+00 1.9	BE+00	9.00E-01 8	9. 37E-02		
	19 FRONT	100.63	0.00	148.2	6.79E-01 5.2	2E-02	0.00E+00 (D. OOE+OO		
	19 BACK	88. 68	57.51	148. 2	5.98E-01 4.8	9E-02	3.88E-01 3	3. 69E-02		
	21 FRONT	45.15	61.13	148.2	3.05E-01 9.1	1E-02	4.13E-01 4	4. 21E-02		
	21 BACK	742.74	60.78	148.2	5.01E+00 9.2	4E-01	4.10E-01 3	3.88E-02		
						05.00				
	23 FRUNI	0.00	767.44	148.2	0.00E+00 0.0	0E+00	5. 18E+00 4	4.84E-01		
	23 BACK	1187.07	788.10	148.2	8. UIE+UU 6. 1	45-01	5. 32E+00 3	5. 20E-01		
	25 ERONT	26 02	214 80	148 2	1 745-01 1 9	2E-01	1 455+00	44E-01	 _	
	25 BACK	82.39	196 37	148 2	5 56E-01 3 1	9E-01	1. 33E+00	1 29E-01		
		02.07	170.07	170.2	0.002 01 3.1					
	26 FRONT	202.81	42, 27	148.2	1. 37E+00 9.4	3E-02	2.85E-01 2	2.77E~02		
	26 BACK	39. 51	45.19	148.2	2. 67E-01 5. 3	5E-02	3.05E-01 3	3. 06E-02		
	27 FRONT	7.62	42.79	148.2	5.14E-02 3.9	5E-02	2.89E-01 2	2. 69E-02		
	27 BACK	0.00	39.87	148. 2	0.00E+00 0.0	0E+00	2.69E-01 2	2. 57E-02		
	29 FRONT	10. 93	13.87	147.5	7.41E-02 1.3	9E-02	9.40E-02 9	7. 53E-03		
	29 BACK	4. 28	13.09	147.5	2.90E-02 1.4	0E-02	8.87E-02 8	3. 32E-03		
	30 FRONT	32.41	14.12	147.5	2, 20E-01 7.7	3E-03	9.57E-02	7.18E~03		
	30 BACK	13.71	13.83	147. 5	7.27E-02 9.9	1E-03	9. 37E-02 4	7. U4E-U3		
	34 ERONT	10 04	17 84	147 5	1 295-01 2 4	75-02	1 215-01	175-02		
	34 PRONT	5 80	17 93	147.5	3 935-02 1 7	5E-02	1 225-01	146-02		
	J- DRUN	5.80	17. 73	147.5	3.73E-02 1.7		I. EEC-VI	17L V2		
	36 FRONT	13.41	10.04	147.5	9.09E-02 3 2	7E-02	6. B1E-02	7.04E-03	-	
	36 BACK	2, 43	8, 81	147.5	1.65E-02 9.5	6E-03	5. 98E-02	5. 58E-03		
	37 FRONT	33. 52	35.87	147.5	2. 27E-01 4. 1	9E-02	2.43E-01 2	2. 35E-02		
	37 BACK	568.94	37. 32	147. 5	3. 86E+00 6. 0	0E-01	2. 67E-01	2. 66E-02		
1	39 FRONT	7.38	13.30	147.5	5.00E-02 1.9	4E-02	9.01E-02	7. 08E-03		
	39 BACK	4.41	12.71	147.5	2.99E-02 7.6	8E-03	8.61E-02 8	3. 5 3E-03		
	40 FRONT	52.03	51.17	147.5	3. 53E-01 3. 3	8E-02	3.47E-01 3	3. 23E-02		
	40 BACK	1172.42	55. 30	147.5	7.95E+00 B.1	4E-01	3.75E-01 3	3. 64E-02		
					4 005 01 1 S			-		
	41 FRUNT	26.85	112.98	147.5	1.82E-01 1.3	0E-01	7.66E-01 /	7.24E-02		
	41 BACK	//. 48	104. 62	147.5	5.25E-01 1.2	3E-01	7.43E-01 /	. 04E-02		
	AT FRONT	58 73	10 03	147 5	2 005-01 2 4	75-02	1 345-01	395-03		
	43 BACK	22 59	18 24	147 5	1 536-01 2 9	0E-02	1 246-01	19E-02		
			10.67							

• • •

.

*** SUMMARY OF DOSES AND DOSE RATES ***

.

Dosimeter	Beta	Gamma	Exposure	Beta Dose Rate	Gamma Dose Rate	
	Dose	Dose	Time	Error	Error	
	(rad)	(rad)	(hr)	(rad/hr) (rad/hr)	(rad/hr) (rad/hr)	
44 FRONT	51. 91	22, 21	147.5	3.52E-01 4.86E-02	1. 51E-01 1. 52E-02	
44 BACK	249.79	21. 52	147. 5	1.69E+00 7.82E-02	1.46E-01 1.39E-02	
45 FRONT	25, 82	18.03	1.0	2.58E+01 4.37E+00	1. 80E+01 1. 73E+00	
45 BACK	9. 20	17.82	1.0	9. 20E+00 3. 76E+00	1.78E+01 1.73E+00	
46 FRONT	77, 90	41.64	147.5	5. 28E-01 3. 19E-01	2.822-01 2.822-02	
46 BACK	927.68	39. 35	147. 5	6. 29E+00 3. 44E-01	2.67E-01 2.59E-02	
48 FRONT	11.84	12.62	147.5	8.02E-02 1.74E-02	8. 56E-02 8. 14E-03	
48 BACK	5.74	11. 97	147. 5	3. 89E-02 2. 73E-02	B. 11E-02 8. 09E-03	
49 FRONT	6851.34	1159.49	147.5	4.64E+01 1.4BE+01	7. B6E+00 1. 28E+00	
49 BACK	36513.66	899. 03	147.5	2. 48E+02 2. 09E+01	6. 09E+00 6. 37E-01	
50 FRONT	92. 94	67. 93	147.5	6. 30E-01 9. 49E-02	4. 61E-01 4. 35E-02	
50 BACK	1645.79	67. 25	147. 5	1.12E+01 4.71E-01	4. 56E-01 4. 71E-02	
51 FRONT	21, 10	18. 62	147.5	1.43E-01 2.59E-02	1. 26E-01 1. 23E-02	
51 BACK	4.85	18. 32	147. 5	3. 29E-02 3. 72E-02	1.24E-01 1.25E-02	
52 FRONT	0. 25	0. 31	1.0	2.52E-01 6.62E-02	3. 10E-01 3. 04E-02	
52 BACK	0. 72	0. 30	1.0	7. 17E-01 4. 40E-02	3. 02E-01 2. 94E-02	
53 FRONT	0.14	0. 27	1.0	1.40E-01 5.91E-02	2. 69E-01 2. 57E-02	
53 BACK	0. 32	0. 25	1.0	3. 21E-01 9. 96E-02	2. 54E-01 ·2. 46E-02	
54 FRONT	0.04	0. 26	1.0	3. 98E-02 3. 32E-02	2. 62E-01 2. 50E-02	
54 BACK	0. 23	0. 27	1.0	2.28E-01 7.18E-02	2. 69E-01 2. 58E-02	
55 FRONT	0.86	0. 39	1.0	8. 63E-01 7. 47E-02	3. 936-01 3. 936-02	
55 BACK	0. 64	0. 36	1.0	6. 39E-01 2. 46E-01	3. 59E-01 3. 67E-02	
56 FRONT	0. 50	0.36	1.0	4.97E-01 1.85E-01	3. 57E-01 3. 52E-02	
56 BACK	0. 73	0. 36	1.0	7. 27E-01 1, 32E-01	3. 64E-01 3. 41E-02	
57 FRONT	0. 70	0. 38	1.0	7.03E-01 4.66E-02	3. 79E-01 3. 59E-02	
57 BACK	1. 23	0.39	1.0	1.23E+00 1.88E-01	3. 92E-01 3. 79E-02	

•

٠

.

.

•

. . .

5 SCHE	RATI	0001 13-JUN-1 000T 13-JUN-1 00UT 13-JUN-1	1983 13:39 1983 13:39 1983 13:39 1983 13:39	TTA4: 13-JUI TTA4: 13-JUI TTA4: 13-JUI TTA4: 13-JUI	\-1983 13:43 \-1983 13:43 \-1983 13:43 \-1983 13:43	DISK\$USEF DISK\$USEF DISK\$USEF	R_DISK1: ESCHE, R_DISK1: ESCHE, R_DISK1: ESCHE,	BETDOSJRATIOOUT. DAT: 2 BETDOSJRATIOOUT. DAT: 2 BETDOSJRATIOOUT. DAT: 2	VAX/VMS VAX/VMS VAX/VMS
	s S S	BSSS CCCC C C SSS C SS C S C SS C SS C SS C SS C	H H EEEE H H E H H E HHHHH EEEE H H E H H E H H E	E					
RRRRR	AAAAAA AAAAAA	TTTTTTTTT TT T TTTTTTT		000000	000000 000000		, <u> </u>		
RR	AA _ AA			00 00	00 00	<u> </u>	/II		
RR	AA AA		11	00 00	00 00				
88	AA AA		11	00 00			/ 11 1 TT		
		TT	11	00 00	00 00	100 00	, <u>,</u> ,		
RRRRR		ŤŤ	11	00 00	00 00	- UU UL			
RR	AAAAAAAAAAA	ŤŤ	ii	00 00	00 00	UU UL	тт		
RR	AAAAAAAAAA	TT	11	- 00 - 00	00 00	00 00	TT I		
RR	AA AA	TT	11	00 00	00 00	00 00	דד ו		
RR	AA AA	тт	11	00 00	00 00	սս սւ	דד ו		
RR	AA AA	TT	111111	000000	000000	υυυυυυυυυ	TT I		
RR	AA AA	ŢT	111111	000000	00000	0000000000	U TT		
DDDDDD DDDDDD DD DD DD DD	АААААА АААААА АА АА АА АА АА АА	TTTTTTTTT TTTTTTTTTT TT TT TT TT	3 3 5 3 3 3 5 3 3 3 5 3 3 3 5 3	22 22 22 22 22 22 22 22 22 22 22 22 22					
DD	AA AA	ŤŤ		22					
DD	AA AA	тт	1111	22					
DD	AA AA	TT	1111	22					
DD	AAAAAAAAAAA	TT	****	22					
DD		11	1111	22					
	<u>AA</u> <u>AA</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	22					
עע מחחחו		TT		2222222222					
DDDDDD		ŤŤ	**	22222222222					
	RRRRR RR RR RR RR RR RR RR RR RR RR RR	SI RRRRRR AAAAAA RRRRR AAAAAA RR AA AA RR AA AA RA AA AA RA AA AA RA AA AA RA AA AA AA AA AA DD AA AA DD AA AA AA DD AAAAAAAA	S C SSS C SSS C SSS C SSS CCCC SSSS CCCC SSSS CCCC SSSS CCCC RRRRR AAAAAA TITITITITI RR AA AA TT RR AAAAAAAAAA RR AA AA TT RR AA AA TT DD AAAAAAAAAAAA TT DD AAAAAAAAAAAA	S C H H E SSS C HHHHH EEEE S C H H E SSS C H H E SSS C H H E SSSS CCCC H H E SSSS CCCC H H E SSSS CCCC H H E RR AA AA TT II RR AA AA TT III RR AA AA TT III RR AA AA TT IIIII RR AA AA TT <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>S C H H E SSS C HHHHH EEEE B C H H E SSS C H H E S C H H E SSSS CCCC H H E S C H H E SSSS CCCC H H E E S C H H E S C H H E E S C H H E E S C H H E E S C H H E E S C H H E S C H H E S C H H E S C H H E E S C H H E S C H H E S C<td>S C H H E SSS C HHHHH EEEE B C H H E S C H H E S C H H E S C H H E S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H</td><td>S C H H E SSS C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S C H H E S S C H H E E S C H H E E S C H H E E S C C C C C</td><td>S C H H E SSS C H H E SSS SSS H H E SSS C H H E SSS SSS C H H E SSSS CCCCC H H EEEEE SSSS CCCCC H H EEEEE RRRRR AAAAAA TTTTTTTTT 111111 000000 000000 00 00 UU UU TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT</td></td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S C H H E SSS C HHHHH EEEE B C H H E SSS C H H E S C H H E SSSS CCCC H H E S C H H E SSSS CCCC H H E E S C H H E S C H H E E S C H H E E S C H H E E S C H H E E S C H H E S C H H E S C H H E S C H H E E S C H H E S C H H E S C <td>S C H H E SSS C HHHHH EEEE B C H H E S C H H E S C H H E S C H H E S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H</td> <td>S C H H E SSS C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S C H H E S S C H H E E S C H H E E S C H H E E S C C C C C</td> <td>S C H H E SSS C H H E SSS SSS H H E SSS C H H E SSS SSS C H H E SSSS CCCCC H H EEEEE SSSS CCCCC H H EEEEE RRRRR AAAAAA TTTTTTTTT 111111 000000 000000 00 00 UU UU TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT</td>	S C H H E SSS C HHHHH EEEE B C H H E S C H H E S C H H E S C H H E S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H	S C H H E SSS C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S S C H H E S C H H E S S C H H E E S C H H E E S C H H E E S C C C C C	S C H H E SSS C H H E SSS SSS H H E SSS C H H E SSS SSS C H H E SSSS CCCCC H H EEEEE SSSS CCCCC H H EEEEE RRRRR AAAAAA TTTTTTTTT 111111 000000 000000 00 00 UU UU TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

.

•

•

.

· · · ·

Dosimeter	MYLA	R #1	. 005" #2	.010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7	
	(n	c)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	
1 FRONT	Raw 706.	50	718.20	675.50	627.10	567.50	576.70	663.90	
	Raw 722	80	730.40	755.60	623.20	572.60	530.10	681.10	
	Ram 700	70	765 80	813 70	573 80	607.80	563.90	645.20	
			700.00						
	Ave 710	00+/- 27	738 13+/- 37	749 27+/- 97	608 03+/- 5%	582 A3+/- AY	556 90+/- AY	663 A0+/- 3X	
	Pota AL	40	74 70	94.07	0.00	0.00	0.00	0.00	
	Deta 40.	00	/4./3	04.07	0.00	0.00	0.00	0.00	
	Ratio 1.	00	1.6037	1.8212	0.0000	0.0000	0.0000		
A DAOL		20	705 50	(00.00	EAO /0	E20 70	F00 00	440 70	
1 BACK	Raw 698.	50	725.50	698.00	540.60	530.70	500.20	663.70	
	Raw 674.	40	746.20	735.30	5/6.20	547.30	534.60	677.20	
	Raw 695.	60	697.00	753.10	547.30	587.00*	577.70	656. 90	
			700 00 0	700.00.0				115 00.1 OF	
	Ave 689.	50+/- 2%	722.90+/- 3%	728.80+/- 4%	554.70+/- 3%	539.00+/- 2%	537.50+/- /%	665.93+/- 2%	
	Beta 23.	57	56. 97	62. 87	0.00	0.00	0.00	0.00	
	Ratio 1.	00	2. 4173	2.6676	0.0000	0. 0000	0. 0000		
2 FRONT	Raw 1076.	00	749.90	753. 60	917.60*	852.30	918.60	774.60	
	Raw 1112.	00	802.10	784. 10	833. 40	832.80	907.80	723. 80	
	Raw 967.	60×	777.00	791.00	849, 40	835.70	900.00	744.80	
	Ave 1094.	00+/- 2%	776.33+/- 3%	776.23+/- 3%	841.40+/- 1%	840.27+/- 1%	908.80+/- 1%	747.73+/- 3%	
	Beta 346.	27	28.60	28. 50	93. 67	92.53	161.07	0.00	
	Ratio 1.	00	0.0826	0.0823	0. 2705	0. 2672	0. 4652		
2 BACK	Raw 873	80*	787 20	811 80	883 80	849 10	920 90	821.90	
2 2/10/1	Ram 1012	00	832 70	760 00	890 40	874 60	898 80	771.50	
	Raw 999	90	766 00	862 40	899 80	928 80	948 60	774 60	
			700.00	002. 40	007.00	720. 00	740.00	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Ave. 1000	05+/- 27	705 20+/- 47	811 AD+/- 47		904 174/- 5Y	933 77+/- 39	789 33+/- AY	
	AVE 1000.	137/- 26	/75.307/~ 46 E 07	02 07	888. 00+/- 0A	084.17+7- JA	100 AD	0.00	
	Beta 211.	02	J. 7/	22.07	76. 6/	74.83	133.43	0.00	
	Katio I.	00	0.0282	0. 1043	0.4663	0. 4481	0. 8305		
3 FRONT	Raw 4913.	00	1493.00	1351.00	1385.00	1337.00	1315.00	1223.00	
	Raw 6111.	00	1502.00	1356.00	1533.00*	1175.00*	1395.00*	1349.00*	
	Raw 6827.	00	1627.00	1376.00	1352.00	1284.00	1259.00	1235.00	
	Ave 5950.	33+/-16%	1540.67+/- 5%	1361.00+/- 1%	1368.50+/- 2%	1310. 50+/- 3%	1287.00+/- 3%	1229.00+/~ 1%	
	Beta 4721.	33	311.67	132.00	139. 50	81.50	58.00	0.00	
	Ratio 1.	00	0. 0660	0. 0280	0. 0295	0.0173	0.0123		
3 BACK	Raw 1136.	00	1126.00	1090.00	1195.00	1163.00	1138.00	1093. 00	
	Raw 1173.	00	1088.00	1029.00	1121.00	1159.00	1251.00	1109.00	
	Raw 1269.	00*	1077.00	1043.00	1174.00	974. 20*	1183.00	1124.00	
	Ave 1154.	50+/- 2%	1097.00+/- 2%	1054.00+/- 3%	1163.33+/- 3%	1161.00+/- 0%	1190. 67+/- 5%	1108 67+/- 1%	
	Beta 45.	83	0.00	0.00	54.67	52. 33	82.00	0.00	
	Ratio 1.	00	0.0000	0.0000	1. 1927	1.1418	1.7891		

SUMMARY OF DOSIMETER READINGS

. . . .

(* indicates a rejected flier)

· , . .

Dosimet	er	MYL	AR #1		.005" #2	. 010" #3	_020" #4	. 032" #5		. 125" #7
		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
4 FRO	NT Rau	1363	. 00		1239.00	1237.00	1378.00*	1247.00	1276.00	1118.00
	Rau	1404	. 00		1244.00	1194.00	1254.00	1223.00	1105.00	1189.00
	Rau	1371	. 00		1217.00	1282_00	1239, 00		00	
					4000 00. / 18	1007 (7./ AV	1044 604 /- 18	1202 474/- BY	1100 224/- 78	1150 001/- OV
	_ AVI	13/5	. 33+/-	- 2%	1233.33+/- 1%	1237.6/+/- 4%	1246. 50+/- 1%	1203. 8/+/- 54	1140. 33+7- 7%	1134.3347-34
	Beta	220	00		74.00	78.33	87.17	44.33	31.00	0.00
	Rat		. 00		0.3364	0.3561	0.3962	0.2015	0. 1409	
A BAC	K Ras		00		1054 00	1109.00	1144 00	1056 00	1076 00	1130.00
- 840		. 1004			1131 00	1050.00	1152 00	1112 00	1190.00	1041 00+
	Bas	. 1070	. 00		1144 00	1110.00	1170 00	1142.00	1172.00	1172.00
	Rai	10/9	. 00		1146.00	1110.00	1170.00	1163.00	1123.00	11/2.00
	Av.	1105	00+/-	- 37	1107 67+/- 4%	1089 33+/- 3%	1163 00+/- 12	1110 33+/- 5%	1116 33+/- 7%	1151.00+/- 3%
	Bet		00.	0.	0.00	0.00	12 00	0.00	0.00	0.00
	B_+		00		0.0000	0.0000	0.0000	0.0000	0.0000	
	Nav.		. 00		0.0000	0.0000	0.0000	0.0000	0.0000	
5 FRO	NT Rai	9408	. 00		10070.00	9682.00	11860.00	11710.00	13740. 00	9390.00
	Rau	8805	00		15070.00*	12290.00	12440.00	11250.00	13840.00	9638.00
	Rau	9172	. 00		10000.00	16010.00	12250.00	11520.00	15070.00*	9768.00
	Ave	9126	. 33+/-	- 3%	10035.00+/- 0%	12660.67+/-25%	12183. 33+/- 2%	11493.33+/- 2%	13790.00+/- 1%	9598.67+/- 2%
	Beta		. 00		436. 33	3062.00	2584.67	1894. 67	4191.33	0.00
	Rat	10	. 00		0. 0000	0.0000	0. 0000	0. 0000	0. 0000	
				,						
5 BAC	K Rau	11030	. 00		10870.00	10240.00	11980.00	12490.00	18770.00	8762.00
	Rau	11740	. 00		10710.00	10780.00	11980.00	10990.00*	17100.00	8918.00
	Rau	10700	. 00		13310.00+	10200. 00	13780. 00*	11920.00	17430.00	9308.00
	Ave	11154	. 67+/-	- 5%.	10790.00+/- 1%	10406.67+/- 3%	11980.00+/- 0%	12205.00+/- 3%	17766.67+/- 5%	9062.67+/- 2%
	Beta	2094	. 00		1727. 33	1344.00	2917.33	3142.33	8704.00	0.00
	Rat	0 1	. 00	~	0.8249	0. 6418	1.3932	1. 5006	4. 1566	
6 FR0	INT Rau	1311	. 00		1101.00	978. 20	1191.00*	1062.00	1285.00	1094.00
	Rau	1143	l. 00#		1205.00	1085.00	1325.00*	1060.00	1111.00+	1064.00
	Rai	1266	00		1275.00	1233.00	1011.00*	1042.00	1233.00	
	Avi	1289	. 50+/-	- 2%	1193.67+/- 7%	1098.73+/-12%	0. 00+/-13%	1054.67+/- 1%	1259. 00+/~ 3%	1090. 33+/- 2%
	Beta	199	17		103.33	8.40	0.00	Q. OO	168.67	0.00
	Rat	io 1	. 00		0. 5188	0. 0422	0. 0000	0.0000	0.8469	
-										
6 BAC	K Rau	1221	. 00		1179.00	1173.00	1167.00	1050.00	1283.00	949. 50*
	Rau	1390	. 00		1138.00	1123.00	1220. 00	1135.00	1226.00	1141.00
	Ra	1550	. 00		1085.00	1060.00*	1204.00	1046.00	1128.00*	1138.00
	Ave	1387	. 00+/-	-12%	1134.00+/- 4%	1148.00+/- 3%	1197.00+/- 2%	1077.00+/- 5%	1254. 50+/- 3%	1139. 50+/- 0%
	Beta	247	50		0.00	8.50	57. 50	0.00	115.00	0.00
	Rat	io 1	. 00		0.0000	0. 0343	0. 2323	0.0000	0. 4646	

• k • •

SUMMARY OF DOSIMETER READINGS

(# indicates a rejected flier)

, ,

TMI Post-Gross Decontamination TLD's (305', 347' & 367') -- DCH-5-82

SUMMARY OF DOSIMETER READINGS

٠

.

•

•

	Dosimeter	MYLAR #1	.005" #2	.010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
		Bau 2084 00	1801 00	1414 00	2040.00	2404 00	2111 00	1771 00
	/ FRUNT	Raw 2084.00	1601.00	1710.00	2960.00	2604.00	2116.00	1771.00
		Raw 2019.00	1887.00	1/18.00	2868.00	2443.00	2114.00	1792.00
		Raw 2052.00	1773.00	1661.00	2835.00	2463.00	2046.00	1704.00
		Ave 2051 67+/- 2%	1753 67+/- 37	1664 33+/- 34	2887 674/- 27	2502 23+/- 47	2092 00+/- 27	1755 674/- 37
		Pota 2001.0747 EX	1/00.0747- 3%	1004. 3347 - 32	1133 00	747 47	2072.00+7- 2%	1733. 87+7- 3%
			0.000	0.000	2 8242	2 5250	1 1 2 4 3	0.00
		Ratio 1.00	0.0000	0.0000	3. 6243	2. 3237	1. 1363	
	7 BACK	Raw 6020.00	2312.00	2000.00	2457.00	3435.00+	1946.00	1703.00
		Raw 6077.00	2207.00	2020.00	2518.00	3718.00*	1899.00	1799.00
		Raw 6035.00	2281.00	2013. 00	2589.00	445B. 00 *	1956.00	1647.00
		Ave 6044.00+/- 0%	2266.67+/- 2%	2011.00+/- 12	2521.33+/- 32	0.00+/-142	1933. 67+/- 22	1716. 33+/- 4%
		Beta 4327.67	550. 33	294.67	805.00	0.00	217.33	0.00
		Ratio 1.00	0. 1272	0. 0681	0, 1860	0.0000	0.0502	
		- Rau 670 10	564 70	531.00	472 40	483 40	499 30	509 10
	O FROM	Raw 8/0.10	507.70	531.00	472.80	463.80	487.30	507.10
		Raw 300.30*	538. 70	680.10	447.70	452.20	480. 90	514.20
		Raw 652.10	JU2. 80*	020.00	434.00	474. /0	435.10*	
		Ave 661, 10+/- 2%	551.80+/- 3%	603.70+/-11%	458.83+/- 3%	476. B3+/- 5%	485.10+/- 1%	509.07+/- 1%
		Beta 152.03	42.73	94. 63	0.00	0.00	0.00	0.00
		Ratio 1.00	0.2811	0. 6225	0.0000	0.0000	0.0000	
	D BACK	Bau 530 80	520 50	509 40	441 10	450 40	543 00#	502 40
	0 BACK	Raw 530.70	520.50	517 50	447.00	4JB. 40	474 70*	ALD 50
		Raw 527.40	526. 50	480.40	467.00	AAD 70		407. JU
		Kaw 5/1.00	518.10	460. 40	457.10	447.70	518.70*	301. 70
		Ave 543.77+/- 4%	521.03+/- 1%	502. 10+/- 4%	455,73+/- 3%	454.05+/- 1%	0.00+/- 9%	491.67+/- 4%
		Beta 52.10	29. 37	10.43	0.00	0.00	0.00	0.00
		Ratio 1.00	0. 5637	0. 2003	0. 0000	0.0000	0.0000	
	11 FRONT	Raw 1212.00*	828.70	992. 30	888. 90	1154.00	2295.00	1728.00
		Raw 1328,00	849.90	1018.00	936.80	1095.00	1B67.00#	1880.00
		Raw 1391.00	843.80	999.00	933.50	1177.00	2321.00	1769.00
		Ave 1359.50+/- 3%	B40. B0+/- 1%	1003.10+/- 1%	919.73+/- 3%	1142.00+/- 4%	2308.00+/- 1%	1792.33+/- 4%
		Beta 0.00	0.00	0.00	0.00	0.00	515.67	0.00
•		Ratio 1.00	0. 0000	0.0000	0. 0000	0. 0000	0.0000	
	11 BACK	Raw 1391.00	1026.00	B13. 60	1213.00	1814.00*	2210.00	1040.00
		Raw 1378.00	1010.00	907. 70 *	1227.00	1649.00	2581.00*	1095.00
		Raw 1288.00	1035, 00	B10. 60	1127.00	1588.00	2210.00	1013.00
		Ave 1350 33+ /- 44	1023 47+/- 19	812 10+/- AV	1100 00+/- =*	1410 50+/- 08	7210 00+/- 0*	1049 334/- 47
		Bata 303 00	0.00	0.00	130 47	540 17	1140 47	44 + LL + LL
		Patia 1 00	0,000	0.0000	0 4609	1 9794	2 8304	V, VV
			0.0000	0.0000	0. 9007	1.0/04	3. 6308	

(# indicates a rejected flier)

. . .

	Dosimeter		MYL	AR #1		. 005" #2	, 010" #3	. 020" #4	,032" #5	. 064" #6	. 125" #7
			(1	nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
	10 50001	Bass		70		221 70	202 40	100 50	107 10	100 70	100.70
	12 FRONT	Raw	230	. 70		212 80	202.40	100.00	177.10	182.70	182.70
		Davi	200	10		212.70	205 90	137.00	101 00*	195.20	
		каш	220	_10		220,00	203, 40		181, 70*	192.10	
		Ave	225	40+/-	3%	218.20+/- 2%	206.13+/- 2%	184, 57+/- 3%	199.10+/- 1%	190.00+/- 3%	179.07+/- 32
		Beta	46	33		39 13	27.07	5.50	20 03	10.93	0.00
		Ratio	1	00		0 8446	0 5842	0 1187	0 4324	0 2360	0.00
			-			0.0110	0.0012	0. 110/	0. 102 1	0. 2000	
	12 BACK	Каш	1/2	90		186. 50	186.90	178.40*	161.70	169.10	171.90
		Raw	194	20*		194.60	181.80	158.90	171.30	179.30	163.00
		Raw	181	00		194. 50	184. 20	161.90	171.60	165.90	165.10
		Ave	176	95+/-	3%	191.87+/- 2%	184. 30+/- 17	160. 40+/- 1%	168.20+/- 3%	171.43+/- 4%	166.67+/- 3%
		Beta	10	28		25.20	17.63	0.00	1 53	4.77	0.00
		Ratio	1.	00		2, 4506	1. 7147	0.0000	0.1491	0.4635	
	13 EBONT	D a	757	80		202 10	220 00	207 00	201 22	100 50	174 00-
	13 FROM	n au	253	70		203.10	229.00	207.90	201.30	199.50	174.20*
		каш	249.	00		233.40	230.70	219.80	179.80*	200.10	193.70
· · -		каш	238	10		228.30	245. 70	212.10	201.50	202.00	201.90
		Ave	247.	00+/-	3%	228. 93+/-11%	235. 13+/- 4%	213. 27+/- 3%	201.40+/- 0%	200. 53+/- 1%	197.80+/- 3%
		Beta	47.	20		31, 13	37. 33	15.47	3.60	2.73	0.00
		Ratio	1.	00		0.6328	0.7588	0.3144	0.0732	0.0556	
··· · _·	13 BACK	Paul	107	40	-	107 10*	200 40	104 00	147 60	100 10	184.00
	13 BACK	Raw	207			107. IU x	100.40	184. 70	187. 50	187.10	
		n aw	202.	80		212.70	189.80	184. 50	183.80*	194.20	186.10
		Raw	K10	00		205.00	214.10	186. 10	170.10	183. 60	197.80
		Ave	205.	47+/-	5%	208.85+/- 3%	201.43+/- 6%	186.83+/- 1%	168.80+/- 1%	188.97+/- 3%	189. 57+/- 4%
		Beta	15.	90		19. 28	11.87	0.00	0.00	0.00	0.00
		Ratio	1.	00		1. 2128	0. 7463	0.0000	0.0000	0. 0000	
	14 FRONT	Raw	367.	60		250. 40	219.80*	240. 40	204.70	215. 40	171.60*
		Raw	357.	30		261.70	250, 80	210.30	218.90	206.70	219.90
		Raw	378.	50		259.30	251.90	223. 30	203.80	221.40	212.00
		AVe	367.	80+/-	37	25/. 13+/- 2%	251.35+/- 0%	224.67+/- 7%	209.13+/- 4%	214. 50+/- 3%	215. 95+/- 3%
		Beta	151.	85		41.18	35.40	8.72	0.00	0.00	0.00
		Ratio	1.	00		0. 2712	0. 2331	0. 0574	0. 0000	0. 0000	
	14 BACK	Raw	219.	30		214.00	214.80	205. 90	187.90	202. 30	191. 50
		Raw	236.	00		210.40	186. BO#	189. 90	194. 30	203. 30	189. 50
		Raw	234.	30		206. 70	205. 60	194. 10	199. 40	202.80	201.60
		Ave	220	87+/-	47	210 274/- 28	210 20+/- 27	184 434/- 47	193 974 /- 58	707 004 (184 204 /- 28
		Reta	35	67	44	16 17	16 00	2 42	0.00	202.00+/~ UA	0.00
		Ratio		00		0 4533	0.00	2.43	0.00	0.00	V. VV
			4.	~		0.4000	V. 4400	0.0002	0.0000	0.2411	

· , · ·

SUMMARY OF DOSIMETER READINGS

(# indicates a rejected flier)

· · · ·

II.28

4

.

Dosimeter		MYL	AR #1		. 005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
15 FRONT	Raw	123	. 50		130. 40	116. 20	117.60	104.20	96.64	112.40
	Raw	132	. 90+		123.10	110.30	121.70	103.10	111.10	106.00
	Raw	120	20		126. 90	121.80	123.10	110.40	103.80	106. 20
	Ave	121	. 85+/-	- 2%	126.80+/- 3%	116. 10+/- 5%	121. 47+/- 1%	105.90+/- 4%	103.85+/- 7%	108. 20+/- 3%
	Beta	13	. 65		18.60	7.90	13. 27	0.00	0.00	0.00
	Ratio	1	. 00		1.3626	0. 5788	0. 9719	0.0000	0.0000	
15 BACK	Raw	118	. 80		99.01	99. 9B	106.40	105.70	95. 63	103. 40
	Raw	105	. 70#		92.28	100.20	98.16	94.45	94. 50	100. 30
	Raw	123	. 60		106.20	94.10	105. 50	99.77	92.70	105. 40
	Ave	121	20+/-	37	99 16+/- 78	98 09+/- 4%	103 35+/- 4%	99 97+/- 6%	94 28+/- 27	103 03+/- 27
	Beta	18	17		0.00	0.00	0.32	0.00	0.00	0.00
	Ratio		00		0.0000	0.0000	0.0176	0.0000	0.0000	0.00
		_							0.0000	
17 ERÚNT	Raw	4	09		2 97	2 94	2.05	2 54	2 70	3 50
17 11011	Raw	3	574		2.77 7.45×	2.04	3.05	2,00	2.70	
	Raw	4	01		2.03+	2.70	2.70*	2.71		
					2.07	E , 71	J. 16	<u> </u>	2. 34*	2.07
	Ave	4	. 05+/-	17	2.91+/- 3%	2.90+/- 2%	3.09+/- 2%	2.75+/- 6%	2.82+/- 2%	2.57+/~ 3%
	Beta	1	48		0.34	0.33	0.52	0.18	0.25	0.00
	Ratio	1	00		0. 2273	0.2259	0.3507	0.1193	0. 1676	0.00
17 BACK	Raw	4	13		3 12	2 97	2 56	2 78	2 53	2 43
	Raw	4	11		3.17	3.04	2 76	2.82	2 44	2.53
	Raw	3	98		3. 46*	2.66+	2.71	2. 53*	2.42	2.56
									/-	
	A∨e	4	07+/-	- 2%	3.15+/- 1%	3.00+/- 2%	2.68+/- 4%	2.80+/- 1%	2. 47+/- 2%	2.57+/- 2%
	Beta	1	50		0. 57	0.43	0.10	0. 23	0.00	0.00
	Ratio	1	00		0. 3816	0. 2867	0. 0695	0. 1505	0. 0000	
18 FRONT	Raw	262	10		197.80	176. 70	179.80	157.90	168.00*	158.10
	Raw	260	30		197. 70	184.00	174.70	165. 40	151.00	159.90
	Raw	198	60 *		179.10*	195. 80+	176. 60	165. 90	157. 20	163. 50
	Ave	261	20+/-	oz	197.75+/- 0%	180.35+/~ 3%	177 03+/- 17	163 07+/- 37	154 10+/- 37	160 50+/~ 27
	Beta	100	70	0.4	37 25	19.85	16 53	2 57	0.00	0.00
	Ratio	1	00		0 3499	0 1971	0 1642	0.0255	0,000	0.00
					0.0077	J. 1771	V. 1072	J. UEJJ	0.0000	
18 BACK	Raw	152	A0+		171 00+	164 00	139 40	141 704	141 20	134 10
	Raw	198	40		144 40	173.50	143 50	158 90	139 90	136.20
	Raw	191	30		145 40	175 60	139 60	159 30	139.00	154 704
								107.00		101.70*
	Ave	194	85+/-	3%	144. 90+/- 0%	171.03+/- 4%	140. 90+/- 2%	159. 10+/- 0%	140.07+/- 1%	136.15+/- 0%
	Beta	58	70		B. 75	34.88	4.75	22.95	3. 92	0.00
	Ratio	1	00		0. 1491	0. 5943	0. 0809	0.3910	0. 0667	

SUMMARY OF DOSIMETER READINGS

(# indicates a rejected flier)

Dosimeter		MYL	AR #1	.005" #2	. 010" #3	. 020" #4	.032" #5	. 064" #6	. 125" #7
		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
	-							100 50	
19 FRUNT	Raw	176	. 40	182.50	175.30	144.40	167.40*	128.50	152.00
	Raw	174	. 10	178.00	174.20	144.80	151.40	130.40	151.60
 	Raw	197	70*	183.30	175.10	142. 30	144.50	130, 20	144.20
	Ava	175	25+/- 13	Y 101 27+/- 2Y	174 87+/- 07	143 83+/- 17	147 99+/- 37	129 70+/- 17	149 27+/- 27
	Bata	25	00	32.00	25 40	0.00	0.00	0.00	0.00
	Deta	= 5.	00	1 2214	0 9952	0.000	0.000	0.000	0.00
	Natio	•	. 00	1. 2010	0. 7052	0.0000	0.0000	0.0000	
19 BACK	Raw	123	. 60	139.50	156.10	128.40	118.70*	118.90	158.70
	Raw	126	. 10	147.80	150.90	127.10	132.40	120.00	136.00*
	Raw	125.	. 80	148.70	147.00	136.80	126. 10	121.40	157.90
	Ave	125	17+/- 17	x 145.33+/- 3X	152.00+/- 2%	130.77+/- 4%	129.25+/- 3%	120. 10+/- 1%	158.30+/- 0%
	Beta	0	00	0.00	0.00	0.00	0.00	0.00	0.00
 	Ratio	ī	00	0.0000	0 0000	0 0000	0 0000	0 0000	
		-		0.0000	0.0000	0.0000	0,0000	0.0000	
		~		0.00		0.00	0.00	4.00	
21 FRUNT	Raw		. 67	0.82	1.08	0.88	0.70	1.02	1.04
	r a w	0.	. 90	0. 97=	1.07	0.87	0.83	0. 77	1.04
 	Raw	0	. 87	0.83	1. 02	0.8/	0.86	1.03	1.04
	Ave	0	87+/- 17	x 0.83+/- 1x	1.05+/- 3%	0.87+/- 1%	0.86+/- 4%	1.00+/- 3%	1.04+/- 0%
	Beta	0.	00	0.00	0. 01	0.00	0.00	0.00	0.00
	Ratio	1.	00	0.0000	0.0000	0.0000	0.0000	0.0000	
 21 BACK	Rau		07	0.03	1.05	0.94	0.05	0.95	0.90
EI DHUN	Raw	1	04	0.93	1.00	1.05*	0.93	1.05+	0.93
	Raw		02	0.98	1.08	0.94	1 04	0 94	0.92
		•	VE	0.70	1.00	0.74	1. 04	0. 74	0. 72
	Ave	1.	03+/- 27	% 0.95+/- 3%	1.08+/- 2%	0.94+/- 0%	0.99+/- 5%	0.94+/- 1%	0.92+/- 1%
 	Beta	0	. 11	0. 03	0.16	0.03	0. 07	0.03	0.00
	Ratio	1.	00	0. 2870	1, 4000	0. 2406	0. 6000	0. 2406	
33 FRONT	Raw	336.	30	0.00	0.00	214.60	200. 30	0.00	205.70
	Raw	344.	60	0.00	0.00	204.60	207.90	0.00	183. 40*
	Raw	330	40	0.00	0.00	229. 20+	205. 60	0.00	202.70
	A	777	10./- 7		0.00.0		204 (0) (0.00.4-08	204 204 (- 18
	Pot-	122	80	~ 0.00+/~ 0%	0.00+/~ 0%	EUT. OUT/- 34	EU4. GUT/~ 2%	0.00+/- 0%	A 00
	Detd	132	. 70	0.00	0.00	5.40	0.40	0.00	0.00
	14110	1.		0.0000	0.0000	0. 0406	0,0030	0.0000	
	-								
33 BACK	Raw	207	40	0.00	0.00	197.70	180.10	0.00	170, 90
	Raw	204	10	0.00	0.00	193.10	178.50	0.00	188. 50*
	Raw	219.	20	0.00	0.00	195. 70	166.60	0.00	171.70
	Ave	210	23+/- 47	7 0.00+/- 0%	0.00+/- 0%	195. 50+/~ 1%	175.07+/- 4%	0.00+/- 0%	171. 30+/- 0%
	Beta	38	.93	0.00	0.00	24.20	3.77	0.00	0.00
	Ratio	1	00	0.0000	0.0000	0.6216	0.0967	0.0000	

SUMMARY OF DOSIMETER READINGS

(# indicates a rejected flier)

• • • · ·

TMI Post-Gross Decontamination TLD's (305', 347' & 367') -- DCH-5-82

، (

Dosimeter		MYL	AR #1		. 005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
 		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
	_									
58 FRONT	Raw	973	. 30		0.00	0.00	931.40	990.20	0.00	913.10
	Raw	1027	. 00		0.00	0.00	919.90	917.40	0.00	878. 70
 	Raw	894	. 10		0. 00	0.00	926. 80	927.50	0.00	937. 20
	Ave	965	47+/-	7%	0.00+/- 0%	0.00+/- 0%	926.03+/- 1%	945.03+/- 4%	0.00+/- 0%	916.33+/- 2%
	Beta	49	. 13		0.00	0.00	9.70	28.70	0.00	0.00
	Ratio	b 1	. 00		0. 0000	0. 0000	0. 1974	0. 5841	0.0000	
 50 BACK	0	671	50+		0.00	0.00	022 00	825 20a	0.00	P09 30
JO DACK	David	1004			0.00	0.00	997 40	808 30	0.00	974 40
	Raw Dave	1000	. 00		0.00	0.00	073.40	908.30	0.00	898.70
	Raw	1048	. 00		0.00	0.00	403. 30	404. 2 0	0.00	878.70
	Ave	1067	00+/-	3%	0.00+/- 0%	0.00+/- 0%	906 23+/- 2%	908.75+/- 0%	0.00+/- 0%	894. 80+/- 2%
 	Beta	172	20		0.00	0.00	11.43	13. 95	0.00	0, 00
	Ratio	5 1	. 00		0.0000	0. 0000	0. 0664	0.0810	0.0000	
	B		~		0.00	0.00	0.84	0.84	0.00	0.94
39 FRUNI	Raw	1	. 06		0.00	0.00	0.96	0.94	0.00	0.96
	Кам	1	. 07		0.00	0.00	0.96	0.92	0.00	0. 93
 	Raw	1	. 03		0.00	0.00	0. 99	0. 98	0.00	1.02
	Ave	1	. 05+/-	2%	0.00+/- 0%	0.00+/- 0%	0.97+/- 2%	0.95+/- 4%	0.00+/- 0%	0.97+/- 4%
	Beta	0	. 08		0.00	0.00	0.00	0. 00	0.00	0.00
	Ratio	b 1	. 00		0. 0000	0. 0000	0.0000	0. 0000	0. 0000	
59 BACK	Raw	1	. 01		0.00	0.00	0.95	0.90	0.00	0. 95
	Raw	0	. 78		0.00	0.00	0. 92	0. 95	0.00	1.02
	Raw	0	. 99		0.00	0. 00	0. 99	0.96	0.00	0.84
	Ave	0	. 99+/-	2%	0.00+/- 0%	0.00+/- 0%	0.95+/- 4%	0.93+/- 3%	0.00+/- 0%	0.94+/-10%
	Beta	0	. 06		0.00	0.00	0. 01	0.00	0.00	0.00
 	Ratio	» 1	. 00		0.0000	0. 0000	0. 2558	0.0000	0.0000	
		2467	00		0.00	0.00	2444 00	2470 00	0.00	2248 00=
OI FRUNI		203/			0.00	0.00	2410.00	20/0.00	0.00	2307. VUW
	Raw	2208	. 00		0.00	0.00	2418.00	2/16.00	0.00	2583.00
 	Kaw	2640	. 00		0.00	0.00	2970.00	26/4.00	0.00	2673.00
	Ave	2618	. 33+/-	4%	0.00+/- 0%	0.00+/- 0%	2477. 33+/- 3%	2686.67+/- 1%	0.00+/- 0%	2628.00+/- 2%
	Beta	0	. 00		0.00	0.00	0.00	58. 67	0.00	0.00
	Ratio	b 1	. 00		0. 0000	0. 0000	0. 0000	0.0000	0.0000	
AL BACK	Bass	2404	00	-	0.00	ō oō	3446 00	2225 00	0.00	2078 00
OI DACK	Paul	2674			0.00	0.00	2430.00	2225.00	0.00	2400.00
	Rau D-1	2074			0.00	0.00	2021.00	22/3.00	0.00	2374 00
	каш	2624	. 00		0.00	0.00	2013.00	2314.00	0.00	23/4.00
	Ave	2670	. 67+/-	2%	0.00+/- 0%	0.00+/- 0%	2567.33+/- 3%	2271.33+/- 2%	0.00+/- 0%	2350. 67+/- 3%
	Beta	320	. 00		0.00	0.00	216. 67	0.00	0.00	0.00
	Ratio	D 1	. 00		0.0000	0.0000	0.6771	0.0000	0.0000	

SUMMARY OF DOSIMETER READINGS

•

٠

.

(# indicates a rejected flier)

11.31

•

Dosimeter		MYL	AR #1		. 005" #2	, 010" #3	. 020" #4	. 032" #5		. 125" #7
		(1	nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
	_									
63 FRONT	Raw	652	90		0.00	0.00	415.90	385. 60	0.00	368. 70
	Raw	646	90		0.00	0.00	418.00	412.70	0.00	396. 50
	Raw	617	10		0, 00	0_00	401,00	395.50	Q_QQ	401.60
	Ave	63B	97+/-	- 3%	0.00+/- 0%	0.00+/- 0%	411.63+/- 2%	397. 93+/- 3%	0.00+/- 0%	388. 93+/- 5%
	Beta	250	03		0.00	0. 00	22.70	9.00	0.00	0.00
	Ratio	1.	00		0.0000	0. 0000	0. 0908	0. 0360	0. 0000	
63 BACK	Raw	819	80		0.00	0 00	434 00	369 00	0.00	342 40
	Raw	753	20		0.00	0.00	466.60	369 00	0.00	348 20
	Raw	774	10		0.00	0.00	473. 20	367.80	0.00	369. 30
	Ave	782.	37+/-	- 4%	0.00+/- 0%	0.00+/- 0%	457.93+/- 5%	368. 60+/- 0%	0.00+/- 0%	359.97+/- 4%
	Beta	422	40		0.00	0.00	97.97	8, 63	0.00	0.00
	Ratio	1.	00		0. 0000	0.0000	0. 2319	0. 0204	0. 0000	
	Paul	741	40		0.00	0.00	720.00	4 E.A. EQ	0.00	454 00
04 FRONT	Raw	779	40		0.00	0.00	720.00	634, 30 490 50	0.00	
	Daw	771	30		0.00	0.00	700.70	670.30	0.00	613.70
	Raw	/31	30		0.00	0.00	/21.20	667.80	0.00	648.10
	Ave	757	43+/-	3%	0.00+/- 0%	0.00+/- 0%	713.97+/- 2%	670. 93+/- 3%	0.00+/- 0%	639. 53+/- 4%
	Beta	117.	90		0.00	0.00	74.43	31.40	0.00	0.00
	Ratio	1.	00		0. 0000	0. 0000	0. 6313	0. 2663	0. 0000	
64 BACK	Raw	651	70		0.00	0.00	607. 40	618, 40	0.00	622.50
	Raw	656.	00		0.00	0.00	597.30	606.90	0.00	668.30
	Raw	647.	40		0.00	0.00	667.00*	617. BO	0.00	60B. 10
	Ave	651.	70+/-	17	0.00+/- 0%	0.00+/- 0%	602.35+/- 1%	614.37+/- 1%	0.00+/~ 0%	632.97+/- 5%
	Beta	18.	73		0.00	0.00	0.00	0.00	0.00	0. 00
	Ratio	1.	00		0. 0000	0.0000	0.0000	0.0000	0.0000	
45 FRONT	Raw	1294	00		0.00	0:00	917 50	890 50	0.00	861 50
00 I NON1	Raw	1251	00		0.00	0.00	927 30	923 80	0.00	824 30
	Raw	1290.	00		0.00	0.00	874. 90	847. 20	0.00	894, 30
	Ave	12/8.	33+/-	- 2%	0.00+/- 0%	0.00+/~ 0%	913.23+/- 2%	887.17+/- 4%	0.00+/- 0%	860.03+/- 4%
	Beti-	418.	30		0.00	0.00	53. 20	27.13	0.00	0.00
	Ratio	1.	00		0.0000	0.0000	0. 12/2	0. 0649	0.0000	
65 BACK	Raw	1188.	00		0.00	0.00	897.30	887. 10	0.00	881.70
	Raw	1133.	00		0.00	0.00	913.20	869.00	0.00	924.80
	Raw	1163.	00		0.00	0.00	851. 90	873. 50	0.00	899. 90
	Ave	1161.	33+/-	2%	0.00+/- 0%	0.00+/- 0%	887.47+/- 4%	877.20+/- 1%	0.00+/- 0%	902. 13+/- 2%
	Beta	259.	20		0.00	0.00	0.00	0.00	0.00	0.00
	Ratio	1	00		0.0000	0.0000	0 0000	0 0000	0 0000	

SUMMARY OF DOSIMETER READINGS

(# indicates a rejected flier)

• · · · ·

· · ·

Dosimete	r	MYLAR #1	. 005	* #2	. 010" #3	. 020" #4	. 032" #5	.064" #6	. 125" #7
		(nc)	(11	:)	(nc)	(nc)	(nc)	(nc)	(nc)
66 FRON	T Raw	1023.00	0. (00	0.00	842. 90*	876.10	0.00	879.30
	Raw	992.40	0. (00	0.00	943. 60	885.60	0.00	921.90
	Raw	1901.00*	0. (0	0.00	932. BO	880. 60	0.00	908.30
	A v.a	1007 70+/-	27 0 (0+/- 07	0.00+/07	938 20+/- 17	887 43+/- 17	0.00+(0)	902 17+/- 27
	Pote	104 52	En 0. (0.0	0.00.00	25.02	0.00	0.0000000	0.00
	Betie	104. 33	0.0		0.00	33.03	0.00	0.00	0.00
	Ratio	1.00	0.000	0	0.0000	0. 3351	0.0000	0.0000	
AL BACK	Paul	1420 00		0	0.00	802 40	DA7 30	<u> </u>	BIA 70
OD DHUN	Dev	1420.00	0.0		0.00	070 70*	847.30	0.00	014.70
	каш	1494.00	0.0	0	0.00	9/3.70*	857.80	0.00	839.60
	Raw	1453.00	0.0	00	0.00	808.30	898. 50	0. 00	B20. 00
	Ave	1458. 33+/-	2% 0.0	00+/- 0%	0.00+/- 0%	805.85+/- 0%	867, 87+/- 3%	0.00+/- 0%	824.77+/- 2%
	Beta	633. 57	0. (00	0.00	0.00	43.10	0.00	0.00
	Ratio	1.00	0. 000	00	0.0000	0.0000	0. 0680	0.0000	
67 FRON	T Raw	247.40*	0. (00	0.00	211.90	226.80*	0.00	208.60
	Raw	284.30	0.0	0	0.00	218 60	208 10	0.00	210 00
	Raw	292.10	0. 0	00	0.00	219.60	204. 30	0.00	203.70
	Ave	288. 20+/-	2% 0.0	0+/- 02	0.00+/- 07	216 70+/- 27	206 20+/- 17	0 00+/~ 0%	207 43+/- 27
	Beta	80 77		0	0.00	9 27	0.00	0.00.	0.00
	Ratio	1 00	0.00	0	0.000	0 1147	0.000	0.000	0.00
	1.0010	1.00	0.000		0.0000	5. 1147	0.0000	0.0000	
67 BACK	Rau	234.30*	0.0	0	0.00	212 40	201 50	0.00	204 40
	Rau	260 90	0.0	0	0.00	212 00	197 40	0.00	199 60
	Paul	250 40		0	0.00	204 20	199 10	0.00	197 70
		200.40	0. 0		0.00	200. 30	170.10	0.00	177.70
	Ave	255. 65+/-	3% 0.0	0+/- 0%	0.00+/- 0%	210, 23+/- 2%	199.00+/- 1%	0.00+/- 0%	201.30+/- 2%
	Beta	54.35	0. (00	0.00	8.93	0.00	0.00	0.00
	Ratio	1.00	0.000	0	0.0000	0. 1644	0. 0000	0.0000	
68 FRON	T Raw	384. 20	0.0	00	0.00	307.60	308.00	0.00	295.70
	Raw	357.20	0.0	00	0.00	281.00	294.20	0.00	299.60
	Raw	359 20	0.0	0	0.00	297 90	301 50	0.00	302 20
			V. 1						
	Ave	367.53+/-	4% 0.0	00+/- 0%	0.00+/- 0%	295. 50+/- 5%	301.23+/- 2%	0.00+/- 0%	299.17+/- 1%
	Beta	68.37	0. (00	0.00	0.00	2.07	0.00	0.00
	Ratio	1.00	0.000	00	0.0000	0.0000	0. 0302	0.0000	
68 BACK	Raw	668.10	Ö. (00	0.00	313.80	287. 10	0.00	275. 50
	Raw	675.90	0. (00	0.00	326. 50	303. 90	0.00	281.00
	Raw	679.90	0. 0	00	0.00	319.00	293. 60	0.00	282.60
	Ave	674.63+/-	1% 0.0	0+/- 0%	0.00+/- 02	319.77+/- 2%	294.87+/- 3%	0.00+/- 0%	279. 70+/- 12
	Beta	394 93	0.0	0	0.00	40.07	15 17	0.00	0.00
	Batia	1 00	6 60	0	0 0000	0 1015	0.0284	0.000	V. VV
	Rat10	1.00	0.000		0.0000	0.1015	0. 0384	0.0000	

SUMMARY OF DOSIMETER READINGS

.

•

. .

(# indicates a rejected flier)

• • • •

Dosimeter		MYL	AR #1	. 005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
	_								
70 FRONT	Raw	668	. 20	0.00	0.00	527.40	512.90	0.00	535.40
	Raw	653	. 40	0.00	0.00	509.60	520.10	0.00	534.90
 	Raw	634	. 10	0,00	0.00	202. 70		Q. QQ	542.20
	A	451	B0+/- 37	0 00+/- 07	0 00+/- 07	512 22+/- 27	500 434/- 37	0 00+/- 07	E27 E0. /_ 17
	Dete	0.51	. 907/- 34	0.00+/- 0%	0.00+/- 0%	0.00	507.8377~ 2%	0.00+/- 0%	537.50+7-1%
	Dete	114	. 40	0.00	0.00	0.00	0.00	0.00	0.00
	Ratio		. 00	0.0000	0.0000	0.0000	0.0000	0.0000	
70 BACK	Raw	1276	. 00	0.00	0.00	687.00	742.40*	0.00	717.80
	Raw	2968	. 00	0.00	0.00	649.20	818.80*	0.00	664.40
	Raw	3233.	. 00	0, 00	0.00	674.80	677.10 *	0.00	663.70
	Ave	2492	33+/-43%	0 00+/- 0%	0.00+/07	670 33+/- 37	$0.00 \pm (-10)$	0 00+/- 0%	481 97+/- 5Y
	Beta	1810	37	0.00	0.00.	0.00	0.00	0.00	0.00
 	Ratio	1	00	0 0000	0 0000	0 0000	0.0000	0 0000	0.00
		-							
	-								
/1 FRUNI	каш	832	. 10	0.00	0.00	656.80	668.60	0.00	629.50
	каш	811.	. 30	0.00	0.00	650.30	682.60	0.00	667.70
 	Raw	846	. 70	0.00	0.00	692.80	675. 80	0.00	650.60
	Ave	830	10+/- 2%	0 00+/- 0%	0 00+/- 0%	666 63+/- 3%	682 33+/- 2%	0.00+/-0%	649 93+/- 3%
	Beta	180	17	0.00	0.00	16.70	32.40	0.00	0.00
	Ratio	1.	00	0.0000	0.0000	0.0927	0.1798	0.0000	
 71 BACK	Base	4400	00	0.00	0.00	1014 00	020 20	0.00	720 80
/I DACK	Raw	A107	. 00	0.00	0.00	1079.00	727.30	0.00	730. 70
	Raw	4702	00	0.00	0.00	1028.00	915 90	0.00	797 70
	Naw	4JUE	. 00	0.00	0.00	1021.00	715.80	0.00	121.10
	Ave	4356	33+/- 3%	0 00+/-02	0 00+/- 0%	1021 00+/- 17	921 03+/- 17	0 00+/- 0%	733 67+/- 1%
	Beta	3622	67	0.00	0.00	287.33	187.37	0.00	0.00
 	Ratio	1.	00	0.0000	0.0000	0.0793	0.0517	0.0000	
				0.00	0.00		4074 00	0.00	1700.00
72 FRUNI	Raw	1926.	. 00	0.00	0.00	1866.00	18/1.00	0.00	1700.00
	10	1834	. 00	0.00	0.00	1813.00	1874.00	0.00	1/08.00
	каш	1787		0.00	0,00	1843.00	1680.00*	0.00	1685.00
	Ave	1915.	67+/- 4%	0.00+/- 0%	0.00+/- 0%	1840. 67+/- 1%	1872. 50+/- 0%	0.00+/- 0%	1697.67+/- 1%
	Beta	218.	. 00	0.00	0.00	143.00	174.83	0.00	0.00
	Ratio	1.	. 00	0. 0000	0.0000	0. 6560	0. 8020	0.0000	
72 BACH	Rain	2115	00	0.00	0.00	1758 00	1772 00	0.00	1782 00
	Raw	2199	00	0.00	0.00	1778 00	1628 00	0.00	1851.00
	Raw	2189	00	0.00	0.00	1780.00	1743 00	0.00	1795.00
						_,			
	Ave	2167	67+/- 2%	0.00+/- 0%	0.00+/- 0%	1772.00+/- 1%	1714.33+/- 4%	0.00+/- 0%	1809. 33+/- 2%
	Beta	358.	. 33	0.00	0.00	0.00	0.00	0.00	0.00
	Ratio	1	00	0 0000	0 0000	0 0000	0 0000	0 0000	

. . .

SUMMARY OF DOSIMETER READINGS

(* indicates a rejected flier)

· · ·

TMI Post-Gross Decontamination TLD's (305', 347' & 367') -- DCH-5-82

. .

Dosimeter		MYL	AR #1		.005" #2	. 010" #3	. 020" #4	. 032" #5	.064" #6	. 125" #7
		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
73 FRONT	Raw	543	50		0.00	0.00	396.60	354.10	0.00	351.00
	Raw	545	. 30		0.00	0.00	426. 90	379.00	0.00	342. 50
	Raw	540	30		0.00	0.00	397.20	365.00	0.00	333.90
	A∨e	543	03+/-	0%	0.00+/- 0%	0.00+/- 0%	406. 90+/- 4%	366. 03+/- 3%	0.00+/- 0%	342. 47+/~ 2%
	Beta	200	57		0.00	0.00	64.43	23. 57	0.00	0.00
	Ratio	1	. 00		0. 0000	0. 0000	0. 3213	0. 1175	0.0000	
73 8464	Raw	356	30		0.00	0.00	338 60	733 40+	0.00	348 50
/0 0000	Raw	362	60		0.00	0.00	342 50	359 50	0.00	344 00
	Raw	357	30		0.00	0.00	339. 30	367. 30	0.00	341. 20
	Ave	358	73+/-	12	0.00+/- 0%	0.00+/- 0%	340 13+/- 1%	363 40+/- 2%	0.00+/- 0%	344. 57+/- 1%
	Beta	14	17		0.00	0.00	0.00	18.83	0.00	0 00
	Ratio		00		0. 0000	0.0000	0.0000	1. 3294	0.0000	
74 FRONT	Raw	380	10*		0.00	0.00	223. 40	212.80	0. 00	219.40
	Raw	337	10		Ö. OO	0.00	219.60	231.80	0.00	220. 60
	Raw	342	20		0.00	0.00	229.10	247. 90	0.00	231.80
	Ave	339	65+/-	1%	0.00+/- 0%	0.00+/- 0%	224.03+/- 2%	230.83+/- 8%	0.00+/- 0%	223. 93+/- 3%
•	Beta	115	72		0.00	0.00	0.10	6.90	0.00	0.00
	Ratio	1	00		0. 0000	0.0000	0.0009	0. 0596	0. 0000	
74 BACK	Raw	918	70		0.00	0.00	270. 90	268.10	0.00	228.00
	Raw	648	10		0.00	0.00	284.80	239. 20*	0.00	213.70
	Raw	916	. 80		0.00	0.00	305. 80*	255. 30	0.00	229.10
	Ave	894	53+/-	4%	0.00+/- 0%	0.00+/- 0%	277 85+/- 4%	261.70+/- 3%	0.00+/- 0%	223. 60+/- 4%
	Beta	670	93		0.00	O. OO	54.25	3B. 10	0.00	0.00
	Ratio	1	00		0. 0000	0. 0000	0.0809	0. 056B	0.0000	
75 6001	Rau	284	90		0.00	0.00	228 80	225 20	0.00	212 80
75 FROM	Raw	272	80		0.00	0.00	240 30	237 20	0.00	224 00
	Raw	280	70		0.00	0.00	225.00	235. 90	0.00	225. 70
	A	270	A7+/-		0.00+/- 07	0 00+/- 0%	721 72+/- 27	224 12+/- 07	0.00+/- 07	221 17+/- 27
	Beta	50	30	5.4	0.00+/- 0.	0.00+/= 0%	10 57	14 97	0.00+7= 0%	0.00
	Ratio	1	00		0.000	0.000	0 1812	0 2567	0.000	0.00
		•								
75 BACK	Raw	224	20	· · -	0. 00	Ō. ÖÖ	215. 50	213. 70	0.00	227. 30
	Raw	226	10		0.00	0.00	190.00*	223. 30	0.00	215.00
	Raw	229	20		0. 00	0.00	218. 10	231. 50	0.00	226. 50
	Ave	226	. 50+/-	1%	0.00+/- 0%	0.00+/- 0%	216.80+/- 1%	222. 83+/- 4%	0.00+/- 0%	222. 73+/~ 3%
	Beta	3	57		0.00	0.00	0.00	0.00	0.00	0.00
	Ratio	<u>i</u>	00		0.0000	0.0000	0.0000	0.0000	0.0000	

SUMMARY OF DOSIMETER READINGS

.

٠

.

.

,

(# indicates a rejected flier)

II.35

Dosimeter		MYL	AR #1		005" #2	. 010" #3	. 020" #4	.032" #5	. 064" #6	. 125" #7
 		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
		-	-		0.00	0.00	259 10	744 70	0.00	242 10
76 FRUNI	naw	309	. 20		0.00	0.00	238.10	240.70	0,00	243.10
	Raw	305	. 20		0.00	0.00	238.60	247.20	0.00	
 	Raw	305	, 10		0.00	<u> </u>		#90. /V	Q, QQ	
	Ave	306	83+/- 1	12	0.00+/- 0%	0.00+/- 0%	259.87+/- 1%	247. 53+/- 1%	0.00+/- 0%	241.70+/- 1%
	Reta	65	13		0.00	0.00	19 17	5.83	0.00	0.00
	Ratio	ĩ	00		0000	0 0000	0 2789	0 0896	0 0000	0.00
		•				0.0000	0. 2707	0.0070	0.0000	
 74 8468							210 10		0.00	241.00
10 BALK	Raw	242	. 60		0.00	0.00	219.10	236.70	0.00	241.80
	Raw	234	. 20		0.00	0.00	218.80	248.00	0.00	244.90
	Raw	2/3	. 80*		0.00	0.00	217.20	237. 30	0.00	248.20
	Ave	248	40+/- 3	3%	0.00+/- 0%	0.00+/- 0%	218.37+/- 0%	241.40+/- 2%	0.00+/- 0%	244.97+/- 1%
	Beta	3	43		0.00	0.00	0.00	0.00	0.00	0.00
 	Ratio	1	00	C	0000	0.0000	0.0000	0.0000	0.0000	
77 FRONT	Raid	376	20		0.00	0.00	348 90	351 30	0.00	338 90
	Rau	301	80		0.00	0.00	354 90	318 20#	0.00	341 20
	Raw	418	00+		0.00	0.00	355 90	348 20	0.00	351 80
 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							J40. EV	0.00	
	Ave	384	00+/- 3	3%	0.00+/- 0%	0.00+/- 0%	353.23+/- 1%	349.75+/- 1%	0,00+/- 0%	343.97+/- 2%
	Beta	40	. 03		0.00	0.00	9.27	5.78	0.00	0.00
	Ratio	1	. 00	c	0000	0.0000	0. 2315	0. 1445	0.0000	
 77 BACK	Ваш	348	60#		0 00	0 00	346 40	347 00	0.00	316 20
	Raw	413	80		0 00	0.00	372 90	334 70	0.00	304. 50
	Raw	378	40		0.00	0.00	343.20	330 40	0.00	307.30
	Ave	406	10+/- 3	37	0.00+/- 0%	0.00+/- 0%	354.17+/- 5%	337.37+/- 3%	0.00+/- 0%	309.33+/- 2%
	Beta	96	. 77		0.00	0.00	44. B3	28.03	0.00	0.00
 	Ratio	1	. 00	C	. 0000	0.0000	0. 4633	0. 2897	0.0000	
78 FRONT	Raw	522	. 90		0.00	0.00	437.70	407.80	0.00	394.10
	Raw	582	. BO#		0.00	0.00	449. 90	432.40	0.00	397.80
	Raw	523	. 30		0.00	0.00	462.70	403. 10	0.00	420. 70
	Ave	523	. 10+/- C	1%	0.00+/- 0%	0.00+/- 0%	450.10+/- 3%	414.43+/- 4%	0.00+/~ 0%	404.20+/~ 4%
	Beta	118	. 90		0.00	0.00	45.90	10.23	0.00	0.00
	Ratio	1	. 00	C	0.0000	0.0000	0.3860	0.0861	0.0000	
	-									
78 BACK	Raw	1296	. 00		0.00	0.00	456.80	532.80	0.00	434. 60
	Raw	1377	. 00		0.00	0.00	479.50	504.50	0.00	424. 70
	Raw	1494	. 00		0.00	0.00	489.00	524. 10	0.00	444. 90
	Ave	1387	00+/- 7	7%	0.00+/- 0%	0.00+/- 0%	475. 10+/~ 3%	520. 47+/- 3%	0.00+/- 0%	434, 73+/- 2%
	Beta	954	27		0.00	0.00	40. 37	85.73	0.00	0.00
	Ratio	1	00	c	0000	0.0000	0.0423	0.0878	0.0000	

• •

SUMMARY OF DOSIMETER READINGS

(* indicates a rejected flier)

• •

٠

. .

SUMMARY	OF	DOSIMETER	READINGS
DOLUMULT	UT.	DOSTILLEN	11211011102

٠

٠

.

.

Dosimete	r	MYLAR #1	.005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
· · · · · · · · · · · · · · · · · · ·		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
								,
80 FRON	T Raw	194. 40	0.00	0.00	174.80	172.90	0.00	148.20*
	Raw	202.10	0.00	0.00	164.70	171.10	0.00	164.00
	Raw	204.10	0.00	0.00	166. 30	164.50	0,00	165.80
				0.00.0			0.00.00	444 00.4
	AVE	200.20+/- 3/	C 0.00+7= 0%	0.00+/- 0%	100.00+/- 34	184. 50+7- 34	0.00+7=02	164.90+7-1%
	Beta	35.30	0.00	0.00	3.70	4.60	0.00	0.00
	Ratio	1,00	0.0000	0.0000	0. 1048	0. 1303	0. 0000	
80 BACK	Raw	175.00	0.00	0.00	160. 50	158.90	0.00	165. 50
	Raw	177.00	0.00	0.00	148.20	168.10	0.00	156.50
	Raw	176.70	0.00	0.00	157.10	153.50	0.00	158.90
							0.00.0	
	AVE	1/6.23+/- 12	0.00+/- 02	0.00+/- 02	155.2/+/- 4%	160. 1/+/- 5%	0.00+/~ 0%	160. 30+7- 3%
	Beta	15.93	0.00	0.00	0.00	0.00	0.00	0.00
	Ratio	1,00	0.0000	0. 0000	0.0000	0.0000	0.0000	
98 FRON	T Raw	1.65	0.00	0.00	1. 54+	1.49	0.00	1.54
	Raw	1 67	0.00	0.00	1 39	1.50	0.00	1.53
	Raw	1 76	0.00	0.00	1 44	1 47	0.00	1 53
		1. /0	0.00	0.00	4. 44	A . 4 /	0.00	1.00
	Ave	1.69+/- 37	C 0.00+/- 0%	0.00+/- 0%	1.41+/- 2%	1.49+/- 1%	0.00+/- 0%	1.53+/- 1%
	Beta	0.16	0.00	0 00	0.00	0.00	0.00	Ö. 0Ö
	Ratio	1 00	0 0000	0.0000	0 0000	0.0000	0.0000	
		1.00	0.0000	0.0000	0.0000	0.0000		
98 BACK	Raw	1.75	0, 00	0.00	1.46	1.53	0.00	1. 56
	Raw	1.79	0.00	0.00	1.59	1.50	0.00	1.60
	Rau	1.74	0.00	0.00	1.51	1.58	0.00	1.50
	AVE	1 76+/- 23	7 0 00+/- 0X	0 00+/- 07	1 52+/- 47	1 53+/- 37	0 00+/- 0%	1.55+/- 37
	Bata	0.21	0.00	0.00	0.00	0.00	0.00	0.00
	Dela	0.21	0.00		0.00	0.00	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0.0000	0.0000	0.0000	
99 FRON	T Raw	2.84	0.00	0.00	2.38	2.42	0.00	2.46
	Raw	2.68	0.00	0.00	2.40	2.33	0.00	2.39
	Raw	2.87	0.00	0.00	2.50	2.44	0.00	2.35
			-					
	Ave	2.86+/- 17	× 0.00+/- 0%	0.00+/- 0%	2.43+/~ 3%	2.39+/- 2%	0.00+/- 0%	2.40+/- 2%
	Beta	0.46	0.00	0.00	0.03	0.00	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0.0552	0.0000	0.0000	
00 0400	Bass	7.04*		0.00	5 46	5.50	0.00	2 34
AA BUCK	каш	3.04*	0.00	0.00	2.40	2.08	0.00	2.44
	Каш	3.3/	0.00	0.00	2.47	2.56	0.00	2.47
	Raw	3. 27	0, 00	0.00	2.50	2. 53	0.00	2.3/
	Ave	3.32+/- 27	2 0.00+/- 0%	0.00+/- 0%	2.49+/- 0%	2.56+/- 12	0.00+/- 0%	2.39+/- 2%
	Ret-	0.93	0.00	0 00	0.10	0.17	0.00	0.00
	Ratio	1 00	0.0000	0 0000	0 1032	0 1863	0 0000	
		1.00	3. 0000			0.1000		

(* indicates a rejected flier)

٠

*** RESULTS ***

CALCULATED DOSES

• • • •

Dosime	ter		Calibration	Factors			Mylar Chip	Calcula	ted Beta	Calcula	ted_Gamma
	. 005"	. 010"	. 020"	. 032"	. 064"	Ave.	Reading	Dose	Error	Dose	Error
	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(nc)	(rad)	(rad)	(rad)	(rad)
1 FR(DNT 0.22	0. 22	0.00	0.00	0.00	0. 22	46.60	10, 16	4.64	135, 13	13.09
1 BA	CK 0.22	0. 22	0. 0 0	0.00	0.00	0. 22	23. 57	5.14	3. 65	135.65	12.79
2 FR(ONT 0.91	0.86	0.00	0.29	0.22	0.57	346.27	197, 12	128 21	152 31	15.09
2 BA	CK 0.97	0.83	0. 26	0. 22	0.22	0. 50	211.62	105.42	79.86	160. 79	16.02
3 FR(INT 0.93	0 92	0.00	0 00	0.00	0 92	4721 33	4354 33	892 77	250 35	23 35
3 BAG	CK 0.99	0. 95	0.22	0. 22	0. 22	0. 52	45.83	23.79	24. 63	225. 84	21. 24
4 FR(ONT 0.66	0.56	0.31	0.36	0 22	0 42	220 00	92 57	43 74	236 16	23 21
4 BA	CK 0.99	0.95	0.00	0,00	0.00	0. 97	0.00	0.00	0.00	234.46	22. 63
5 FR(NT 0 99	0.95	0.00	0 00	0.00	0.97	0.00	0 00	0.00	1955 25	184 00
5 BAG	CK 0.22	0.24	0. 22	0. 22	0. 22	0. 22	2094.00	467. 23	130.04	1846. 07	177. 11
6 FR		0.90	0.00	0.00	0 22	0.52	100 17	105 74	71 79	222 10	21 24
6 BA	CK 0.99	0. 91	0.00	0.00	0.22	0. 71	247. 50	175.05	157.00	232.12	21. 59
7 680		0.95	0 22	0 22	0 22	0.52	784 00	152 45	125 50	257 43	24 55
7 BAG	CK 0.87	0.87	0.00	0.00	0.31	0. 68	4327.67	2959. 21	1393.99	349. 62	36.09
0 500		0.34	0.00	0.00	0.00	0.48	152.02	74 20	40.57	102 70	0.70
8 BAC	CK 0.43	0.73	0.00	0.00	0.00	0.58	52.10	30.13	20.76	100.15	10. 10
11 500		0.95	0.00	0.00	0.00	0.87	0.00	0.00	0.00	748 10	27 54
11 BAG	CK 0.99	0. 95	0.26	0. 22	0. 22	0. 53	303.00	159.82	128. 23	213.75	21. 62
19 FB(NT 0 22	0.31	0.00	0 22	0.22	0.74	44 33	11 12	3.04	24 40	2 57
12 BAC	CK 0.22	0. 22	0.00	0.00	0.22	0. 22	10.28	2.24	1.61	33. 95	3. 30
13 580	NT 0 34	0 22	0.37	0.00	0.28	0.31	48.20	15.00	A 45	40.78	3.63
13 BAC	CK 0.22	0.22	0.00	0.00	0.20	0.22	15.90	3.47	2.59	38. 61	3.88
IA ER	NT 0 79	0 49	0.00		0 00 -	0.71	151 05	107 34		43 00	A 25
14 BAG	CK 0.54	0.46	0.00	0.00	0. 22	0.40	35.67	14.42	7.49	37.56	3. 91
15 500		0.31	0.33	0.00	0.00	0.75	10 45	2.41		22.04	2.10
15 BAC	CK 0.99	0.95	0.00	0.00	0.00	0.97	18, 17	17.63	4.18	20. 99	2.02
17 690	NT 0 77	0.70	0 34	0.00	0.22	0 51	1 40	0.75	0.40	0.52	0.05
17 BAC	CK 0.61	0. 63	0.00	0.00	0. 00	0. 62	1. 50	0.93	0. 07	0. 52	0.05
10 500		0.72	0.00	0.00	0.00	0.49	100 70	40.40	7.05	22.45	2.08
18 BAC	CK 0.84	0.30	0.00	0. 22	0. 22	0.39	58.70	23.14	17.88	27.73	2.58
10 500	NT 0 22	0.22	0.00	ō 00	ā 00	A 55	25 00		1 05	20 4	2.07
19 BAC	CK 0.99	0.22	0.00	0.00	0.00	0.22	25.98	5.66	1.02	30.41	2.9/

. . .

TMI Post-Gross Decontamination TLD's (305', 347' & 367') -- DCH-5-82

*** RESULTS ***

CALCULATED DOSES

• • • •

Dosimete	r	c	alibration	Factors			Mylar Chip	ip Calculated Beta		eta <u>Calculated</u> Gamma	
	. 005"	. 010"	. 020"	. 032"	. 064"	Ave.	Reading	Dose	Error	Dose	Error
	(rag/nc)	(rad/nc/	(rag/nc/	(rag/nc)	(rao/nc)	(rag/nc)	(nc)	(Fad)	(rad)	(rad)	(rac)
21 FRON	T 0.99	0. 95	0.00	0.00	0.00	0. 97	0.00	0.00	0.00	0. 21	0. 02
21 BACK	0. 71	0. 22	0.00	0. 22	0.22	0. 34	0.11	0.04	0. 03	0. 19	0. 02
33 FRON	T 0.00	0.00	0. 57	0. 59	0.00	0.58	132.90	76. 93	4. 47	41.60	3.89
33 BACK	0.00	0.00	0. 22	0.48	0.00	0.35	38. 93	13.60	7.75	34. 89	3. 25
58 FRON	T 0.00	0.00	0.46	0. 22	0.00	0. 34	49. 13	16.56	25. 16	186.66	17. 81
58 BACK	0.00	0.00	0.55	0. 50	0.00	0. 53	172. 20	90.55	17.96	182, 27	17. 29
59 FRON	T 0.00	0.00	0. 60	0. 59	0.00	0. 60	0.08	0. 05	0.03	0. 20	0. 02
59 BACK	0.00	0.00	0. 41	0. 59	0.00	0.50	0.06	0.03	0.05	0. 19	0. 03
61 FRON	T 0.00	0.00	0. 60	0. 59	0.00	0. 60	0. 00	0.00	0.00	535. 32	51. 45
61 BACK	0.00	0.00	0. 22	0. 59	0.00	0.40	320.00	127.04	89. 25	478.83	46. 42
63 FRON	T 0.00	0.00	0. 54	0.55	0. 00	0. 54	250.03	135.48	14. 33	79.23	8.20
63 BACK	0.00	0.00	0.43	0. 57	0.00	0. 50	422. 40	210. 36	44. 51	73. 33	7.49
64 FRON	T 0.00	0.00	0. 22	0. 29	0.00	0. 25	117.90	30. 05	10. 50	130. 27	12. 97
64 BACK	0.00	0.00	0. 60	Ò. 59	0.00	0. 60	18. 73	11.16	18.90	128. 94	13. 59
65 FRON	0.00	0.00	0. 51	0. 52	0.00	0. 51	418.30	214.26	21.81	175. 19	17.79
65 BACK	0.00	0.00	0. 60	0. 59	0.00	0. 60	259. 20	154.39	21. 02	183. 76	17. 65
66 FRON	T 0. 00	0.00	0.35	0. 59	0.00	0. 47	104. 53	49. 24	22. 60	183. 78	17.67
66 BACK	0.00	0.00	0.60	0. 51	0.00	0.56	633. 57	353. 37	45. 03	168.00	15.85
67 FRON	T 0.00	0.00	0. 52	0. 59	0.00	0. 55	80.77	44.66	5.40	42. 25	3. 99
67 BACK	0.00	0.00	0.48	0. 59	0.00	0. 53	54.35	29. 05	6. 26	41.00	3. 93
68 FRON	T 0.00	0.00	0. 60	0. 55	0.00	0.58	68. 37	39. 57	8. 87	60. 94	5.71
68 BACK	0.00	0.00	0. 53	0. 55	0.00	0.54	394. 93	211.89	6.38	56. 97	5. 35
70 FRON	T 0.00	0.00	0.60	0.59	0.00	0. 60	114.40	68.14	10. 53	109.49	10. 22
70 BACK	0.00	0.00	0. 60	0. 59	0.00	0.60	1810. 37	1078.34	632. 92	138. 92	14. 38
71 FRON	T 0.00	0.00	0. 53	0.39	0.00	0.46	180. 17	83. 06	22. 33	132. 39	12.98
71 BACK	0.00	0.00	0. 54	0.53	0.00	0. 54	3622. 67	1946.60	86. 34	149. 4 5	13. 99
72 FRON	T 0.00	0. 0 0	0. 22	0. 22	0.00	0. 22	218.00	47. 52	16. 98	345. 81	32. 25
72 BACK	0. 00	0.00	0. 60	0. 59	0.00	0.60	358. 33	213. 44	35. 17	368. 56	35.08
73 FRON	T 0.00	0. 00	0.36	0. 46	0.00	0. 41	200. 57	82. 38	13.79	69. 76	6. 72
73 BACK	0.00	0.00	0. 60	0.22	0.00	0.41	14. 17	5. 81	4.37	70. 19	6. 57
74 FRON	T Ö. ÖÖ	ō. oo	0. 60	0. 52	0. 00	0.56	115.72	65. 05	7.86	45.62	4. 47
74 BACK	0.00	0.00	0. 54	0. 53	0.00	0. 53	670. 93	358. 24	23. 47	45. 55	4. 58
75 FRON	T 0. 00	0.00	0. 47	0. 30	0. 00	0.39	58. 30	22.46	7.64	45. 05	4.39
75 BACK	0.00	0.00	0.60	0. 59	0.00	0. 60	3. 57	2.12	4. 37	45. 41	4. 45

.

• • •

TMI Post-Gross Decontamination TLD's (305', 347' & 367') -- DCH-5-82

*** RESULTS ***

Mular Chip Calculated Gamma Dosimeter Calibration Factors Calculated Beta 010" . 032" . 005" 064" Reading 020" Ave. Dose Error Dose Error (rad/nc) (rad/nc) (rad/nc) (rad/nc) (rad/nc) (nc) (rad) (rad) (rad) (rad) 65.13 0.49 0.00 0.44 28.79 4. 53 49.23 4.61 76 FRONT 0.00 0.00 0.40 2.05 49.90 76 BACK 0.00 0.00 0. 60 0.59 0.00 0. 60 3.43 5.24 4.69 77 FRONT 0.00 0.00 0.43 0.43 0.00 0.43 40.03 17.18 5.58 70.07 6.67 77 BACK 0.27 0. 00 0.26 96. 77 25.35 3. 31 63. 01 5. 99 0.00 0.00 0.26 48.05 78 FRONT 0.00 0.00 0.32 0.49 0.00 0.40 118.90 15.98 62.34 8. 20 954.27 505. 63 77.09 88. 56 8.49 78 BACK 0.00 0. 57 0. 49 0. 00 0. 53 0.00 0.00 0.00 0. 44 0.00 0.48 35. 30 17.09 3: 27 33. 59 3.13 80 FRONT 0. 52 BO BACK 0.00 0. 59 0.00 0. 60 15.93 9.49 2.85 32. 65 3. 18 0.00 0. 60 98 FRONT 0.00 0.00 0. 60 0.59 0.00 0. 60 0.16 0.10 0.03 0. 31 0.03 0. 03 98 BACK 0.00 0.00 0. 60 0. 59 0.00 0. 60 0. 21 0. 12 0.04 0. 32 99 FRONT 0.00 0.00 0. 56 0. 59 0.00 0. 58 0.46 0. 26 0.04 0.49 0. 05 99 BACK 0. 93 0. 42 0.10 0.49 0. 05 0.00 0.00 0. 53 0.38 0.00 0.45

CALCULATED DOSES

• • • •

•

.

.

TMI	Post-Gross	Decontamination	TLD's	(305')	347 4	(367')	 DCH-5-82

*** SUMMARY OF DOSES AND DOSE RATES ***

4

.

Do	simeter	Bet	a	Gamma	Exposu	re	Beta Do	se Rate	Gamma Do	se Rate
		Dos	e	Dose	Tim	e		Error		Error
		(T.	rd)	(rad)) (hr)	(rad/hr	·) (rad/hr)	(rad/hr) (rad/hr)
1	FRONT	10	16	135 13	AAB (0	1 52E-02	A 95E-03	2 02E-01	1 965-02
ī	BACK	5	14	135.6	5 668	ō	7 69E-03	5 46E-03	2 035-01	1 91E-02
-	21121		• •	100.0		•			E. ODE OI	
2	FRONT	197	12	152 31	648	0	2 95E-01	1 92E-01	2 28E-01	2 26E-02
5	BACK	105	45	160.79	AAB (ŏ	1 58E-01	1 20E-01	2 A1E-01	2 40E-02
-	2000			100.7		•		I. LOL OI	E. 412 01	
3	FRONT	4354	33	250 35	5 668	0	6 52E+00	1 34E+00	3 756-01	3 49E-02
3	BACK	23	79	225 84	668	õ	3 56E-02	3 69E-02	3 38E~01	3 18E-02
-	211211	20.	•••	220.0		•	0. 00L 01		0.002 01	
···· 4	FRONT	92	57	236 14	668	0	1 39E-01	6 55E-02	3 54E-01	3 48E-02
4	BACK	0	00	234 4/	668	õ	0 00E+00	0 00E+00	3 51E-01	3 39E-02
		-				-				
5	FRONT	0.	00	1955.25	5 668	0	0.00E+00	0.00E+00	2.93E+00	2.78E-01
5	BACK	467.	23	1846.07	668.	ō	6.99E-01	1.95E-01	2.76E+00	2.65E-01
-						-				
6	FRONT	105.	74	222, 10	668.	ō	1. 58E-01	1.07E-01	3. 32E-01	3. 1BE-02
6	BACK	175.	05	232, 12	668.	ō	2. 62E-01	2.35E-01	3. 47E-01	3. 23E-02
7	FRONT	153.	65	357.63	668.	0	2. 30E-01	1.88E-01	5.35E-01	5.17E-02
7	BACK	2959.	21	349. 63	2 668.	ō	4. 43E+00	2.09E+00	5. 23E-01	5.40E-02
						-				
8	FRONT	74.	28	103.70	668.	0	1. 11E-01	7. 27E-02	1.55E-01	1.45E-02
8	BACK	30.	13	100.1	5 668. (0	4. 51E-02	2 3.11E-02	1. 50E~01	1.51E-02
11	FRONT	O .	00	365.10	645.	5	0. 00E+00	0.00E+00	5.66E-01	5. B2E-02
11	BACK	159.	82	213.7	5 645.	5	2. 48E-01	1.99E-01	3. 31E-01	3. 35E-02
12	FRONT	11.	13	36.46	645.	5	1.72E-02	2 4.71E-03	5. 65E-02	5. 54E-03
12	BACK	2.	24	33. 9	5 645.	5	3. 47E-03	2. 49E-03	5. 26E-02	5.11E-03
13	FRONT	15.	0В	40. 29	645.	5	2. 34E-02	2 7.21E-03	6. 24E-02	6. 07E-03
13	BACK	З.	47	38. 61	645.	5	5. 37E-03	4.01E-03	5.98E-02	6.00E-03
14	FRONT	107.	34	43. 99	645.	5	1.66E-01	1.41E-02	6. B1E-02	6. 58E-03
14	BACK	14.	42	39.56	645.	5	2. 23E-02	2 1.16E-02	6.13E~02	6.06E-03
15	FRONT	Э.	41	22. 04	645.	5	5.28E-03	3 2.03E-03	3. 41E-02	3. 38E-03
15	BACK	17.	63	20. 99	7 645.	5	2.73E-02	2 6.47E-03	3. 25E-02	3.13E-03
						_				
17	FRONT	0 .	75	0. 5	2 1.	0	7.47E-01	3. 98E-01	5. 24E-01	5.16E-02
17	BACK	0.	73	0. 52	2 1.	0	9. 32E-01	6. 57E-02	5. 24E-01	4. 99E-02
18	FRONT	68 .	19	32. 69	645.	5	1.06E-01	1.23E-02	5.06E-02	4.79E-03
18	BACK	23.	14	27.73	3 645.	5	3. 58E~02	2 2.77E-02	4. 30E-02	4.00E-03
					معيورية تستد		-			1 838 197
19	FRONT	5.	66	30.4	645.	5	8.78E-03	1.58E-03	4.71E-02	4.57E-03
19	BACK	0.	00	32.2	5 645.	5	U. 00E+00	U. 00E+00	5.00E-02	4.65E-03

.

TMI Post-Gross Decontamination TLD's (305', 347' & 367') -- DCH-5-82

Dos	simeter	Be	ta	Gamma	Exposure	Beta Dose Rate	Gamma Dose Rate
		Do	5 e	Dose	Time	Error	Error
		(r	ad)	(rad)	(hr)	(rad/hr) (rad/hr) (rad/hr) (rad/hr)
21	FRONT	0	. 00	0.21	1.0	0.00E+00 0.00E+00	2.12E-01 1.97E-02
21	BACK	0	04	0.19	1.0	3. 91E-02 2. 92E-02	1.87E-01 1.75E-02
33	FRONT	76	93	41.60	1.0	7. 69E+01 4. 47E+00	4. 16E+01 3. B9E+00
33	BACK	13	60	34.89	1.0	1.36E+01 7.75E+00	3. 49E+01 3. 25E+00
58	FRONT	16	56	186.66	668. 0	2. 48E-02 3. 77E-02	2.79E-01 2.67E-02
58	BACK	90	. 55	182. 27	66B. O	1.36E-01 2.69E-02	2.73E-01 2.59E-02
59	FRONT	0	05	0. 20	1.0	4. 84E-02 2. 82E-02	1. 98E-01 2. 03E-02
59	BACK	0	. 03	0.19	1.0	2. 87E-02 4. 67E-02	1.91E-01 2.56E-02
61	FRONT	0	. 00	535. 32	668. 0	0.00E+00 0.00E+00	B. 01E-01 7. 70E-02
61	BACK	129.	. 04	478.83	668. 0	1.938-01 1.348-01	7.17E-01 6.95E-02
63	FRONT	135	48	79. 23	668. 0	2.03E-01 2.15E-02	1.19E-01 1.23E-02
63	BACK	210	. 36	73. 33	668. 0	3.15E-01 6.66E-02	1.10E-01 1.12E-02
64	FRONT	30	05	130.27	668.0	4. 50E-02 1. 57E-02	1.95E-01 1.94E-02
64	BACK	11	. 16	128. 94	668. 0	1. 67E-02 2. 83E-02	1.93E-01 2.03E-02
65	FRONT	214	26	175.19	66B. 0	3.21E-01 3.26E-02	2. 62E-01 2. 66E-02
65	BACK	154	. 39	183. 76	668. 0	2. 316-01 3. 156-02	2.75E-01 2.64E-02
66	FRONT	49	24	183. 98	66B. O	7. 37E-02 3. 3BE-02	2.75E-01 2.65E-02
66	BACK	353	. 37	168.00	668. 0	5. 29E-01 6. 74E-02	2. 52E-01 2. 37E-02
67	FRONT	44	. 66	42.25	645.5	6. 92E-02 B. 36E-03	6. 55E-02 6. 1BE-03
67	BACK	29	. 05	41.00	645. 5	4. 50E-02 9. 70E-03	6. 35E-02 6. 09E-03
68	FRONT	39.	. 57	60. 94	645.5	6.13E-02 1.37E-02	9.44E~02 8.84E-03
68	BACK	211	. 89	56. 97	645.5	3. 28E-01 9. 88E-03	8.83E-02 8.29E-03
70	FRONT	68	. 14	109.49	645. 5	1.06E-01 1.63E-02	1.70E-01 1.58E-02
70	BACK	1078	. 34	138, 92	645. 5	1.67E+00 9.B1E-01	2.15E-01 2.23E-02
71	FRONT	83.	. 06	132.39	645.5	1. 29E-01 3. 46E-02	2.05E-01 2.01E-02
71	BACK	1946.	. 60	149. 45	645.5	3. 02E+00 1. 34E-01	2. 32E-01 2. 17E-02
72	FRONT	47	52	345. 81	645. 5	7. 36E-02 2. 63E-02	5. 36E-01 5. 00E-02
72	BACK	213	. 44	368. 56	645.5	3.31E-01 5.45E-02	5.71E-01 5.43E-02
73	FRONT	82	38	69.76	645. 5	1.28E-01 2.14E-02	1.08E-01 1.04E-02
73	BACK	5.	81	70. 19	645.5	9.01E-03 6.76E-03	1.09E~01 1.02E-02
74	FRONT	65	05	45. 62	645.5	1.01E-01 1.22E-02	7.07E-02 6.92E-03
74	BACK	358	24	45. 55	645. 5	5. 55E-01 3. 64E-02	7.06E-02 7.10E-03
75	FRONT	22	46	45.05	645.5	3.48E-02 1.18E-02	6. 98E-02 6. 80E-03
75	BACK	2	12	45.41	645. 5	3. 29E-03 6. 76E-03	7.04E-02 6.89E-03

. . . .

*** SUMMARY OF DOSES AND DOSE RATES ***

. . .

TMI Post-Gross Decontamination TLD's (305', 347' & 367') -- DCH-5-82

Dosi	imeter	Bet	ta	Gan	ma	Exposure	Beta	Dose	Rate	Gamma	Dose	Rate
		Dos	se .	Dos	5 e .	Time			ETTOT			Error
		(12	d)	(T <i>i</i>	d)	(hr)	(rad	/hr)	(rad/hr)	(rad	/hr)	(rad/hr)
76 F	RONT	28.	79	49.	23	645. 5	4. 46E	-02 7	01E-03	7. 63E	-02 7	13E-03
76 E	BACK	2.	05	49.	90	645.5	3. 17E	-03 8	12E-03	7.73E	-02 7	26E-03
77 F	RONT	17.	18	70.	07	645. 5	2. 665	-02 8	. 64E-03	1. 09E	-01 1	03E-02
77 E	BACK	25.	35	63 .	01	645.5	3. 93E	-02 5	. 13E-03	9. 76E	-02 9	28E-03
78 F	RONT	48.	05	82.	34	645. 5	7.44E	-02 2	47E-02	1. 28E	-01 1	27E-02
78 E	BACK	505.	63	88.	56	645. 5	7. 83E	-01 1	. 19E-01	1. 37E	-01 1	32E~02
80 F	RONT	17.	ō9	33.	59	645.5	2. 65E	-02 5	. 06E-03	5. 20E	-02 4	86E-03
80 B	BACK	9.	49	32.	65	645. 5	1. 47E	-02 4	. 42E-03	5. 06E	-02 4	93E-03
98 F	RONT	0.	10	O .	31	1.0	9. 53E	-02 3	46E-02	3. 13E	-01 2	91E-02
98 B	BACK	0.	12	O .	32	1.0	1.25E	-01 3	51E-02	3. 16E	-01 3	13E-02
99 F	RONT	0.	26	0.	49	1.0	2. 64E	-01 3	55E-02	4. 89E	-01 4	70E-02
99 E	BACK	0.	42	0.	49	1.0	4. 22E	-01 1	02E-01	4. 87E	-01 4	63E-02

*** SUMMARY OF DOSES AND DOSE RATES ***

4

•

.

.

.

٠

٠

VAX/VMS	SCHE	RATIODUT	13-JUN-1983 13:39	TTA4:	13-JUN-1983 13:46	DISK\$USER_DISK1: [SCHE. BETDOS]RATIOOUT. DAT; 3	VAX/VMS
VAX/VMS	SCHE	RATIOOUT	13-JUN-1983 13:39	TTA4:	13-JUN-1983 13:46	DISK&USER_DISK1: [SCHE. BETDOSJRATIOOUT. DAT; 3	VAX/VMS
VAX/VMS	SCHE	RATIOOUT	13-JUN-1983 13:39	TTA4:	13-JUN-1983 13:46	DISK#USER_DISK1: LSCHE. BETDOSJRATIOOUT. DAT; 3	VAX/VMS

 	 	 SS	56	CCCC	H	н	EEEE
		S		C	H	н	E
		S		С	н	н	E
		56	5	С	ннн	HH	EEE
			S	с	н	н	E
	 	 	S	C	Н	H	E
		555	5	CCCC	н	н	EEEE

RRRF	RRRR	AAAA	AA	TTTTTTTTT	111111	0000	000	00	0000	w	UU	TTTTTTTTT	
RRRF	RRRRR	AAAA	AA	*****	111111	0000	юо	00	0000	υu	UU	****	
 RR	RR	AA	AA	TT	II	00	00	00	00	UU_	UU	TT	
RR	RR	AA	AA	TT	11	00	00	00	00	UU	UU	TT	
RR	RR	AA	AA	TT	11	00	00	00	00	UU	UU	TT	
RR	RR	AA	AA	TT	11	00	00	00	00	UU	UU	TT	
RRRF	RRRR	AA	AA	TT	11	00	00	00	00	υu	υu	TT	
RRRF	RRRR	AA	AA	TT	11	00	00	00	00	υu	υu	TT	
 RR	RR	AAAAAAA	AAAA	TT	I I	00	00	00	00	υu	00	TT	
RR	RR	AAAAAA	AAAA	TT	11	00	00	00	00	UU	UU	TT	
RR	RR	AA	AA	TT	11	00	00	00	00	υu	UU	TT	
RR	RR	AA	AA	TT	11	00	00	00	00	υu	UU	TT	
RR	RR	AA	AA	TT	111111	0000	юо	00	0000	UUUU	JUUUUUUU	TT	
RR	RR	AA	AA	TT	111111	0000	00	00	0000	υυυι	JUUUUUUU	TT	

.

• •

· · - · ·							
DDDDD	DDD	AAAAA	A	TTTTTTTTT		33	3333
DDDDD	DDD	AAAAA	A	TTTTTTTT	1111	33	3333
DD	DD	AA	AA	TT		33	33
DD	DD	AA	AA	TT		33	33
DD	DD	AA	AA	TT			33
DD	DD	AA	AA	TT			33
DD	DD	AA	AA	TT			33
DD	DD	AA	AA	TT	1111		33
DD	DD	AAAAAAA	AAA	TT			33
DD	DD	AAAAAAA	AAA	TT	1111		33
DD	DD	AA	AA	TT	11	33	33
DD	DD	AA	AA	TT	3.3	33	33
DDDDD	DDD	AA	AA	ΤŤ		33	3333
DDDDD	DDD	AA	AA	TT	11	33	3333

		SSSS S S	2000 C C	H H H	H H H	EEEEE E E														 			 		
			c c	ннн	нн	ËEEE E																			
	a a second	S SSSS	c cccc	н	H	E EEEEE	-													 			 		
VAX/VMS	SCHE	RATIODUT	13-JUN-	1983	13	. 39	TTAA	13-	- JUN	-198'	- 1-1-	46	DI	-	SE B	DISK	1 · 1 97	HE	RETO	T 100U	тра	T: 3		MG	

VHA/ VI13	JUNE	KALI0001	13-000-1403 13:34	1184	13-JUN-1983 13:40	DISK&USER_DISKI: LSCHE. BEIDUSIKATIUUUT. DATI 3	VAX/VMS
VAX/VMS	SCHE	RATIOOUT	13-JUN-1983 13:39	TTA4:	13-JUN-1983 13:46	DISK\$USER_DISK1: [SCHE. BETDOS]RATIOOUT. DAT; 3	VAX/VMS
VAX/VMS	SCHE	RATICOUT	13-JUN-1983 13:35	TTA4:	13-JUN-1983 13:46	DISK\$USER_DISK1: [SCHE. BETDOSJRATIOOUT. DAT; 3	VAX/VMS

٠

.

Dosim	neter		MYL	AR #1		. 005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
			()	nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
	BONT	P	4.71	70		0.00	0.00	318 00	212 40	0.00	244 20
01 1	RUNI	Raw	031	20		0.00	0.00	317.00	312.40	0.00	244.20
		каш	634	00		0.00	0.00	338.40	298.90	0.00	253.00
		Raw	688	00		0.00	0.00	326. 20	281.00#	0, 00	271.10#
		Ave	651	23+/	57	0 00+/- 0%	0.00+/-0%	327 87+/~ 3%	305 65+/- 3%	0 00+/- 0%	248 60+/~ 3%
		Rota	402	63		0.00	0.00	79 27	57 05	0.00	0.00
			402.	00		0.0000	0.000	0 1949	0 1417	0.000	0.00
		Ratio	•	00		0.0000	0.0000	0. 1707	0. 1417	0.0000	
81 8	BACK	каш	824	40		0.00	0.00	3/5.50	303, 50	0.00	245.40
		Raw	822.	00		0.00	0.00	369.50	270. 50*	0.00	228.30
		Raw	744.	10*		0.00	0.00	367. 30	302. 50	0.00	215.70
		Ave	823.	20+/-	0%	0.00+/- 0%	0.00+/- 0%	370.77+/- 1%	303.00+/- 0%	0.00+/- 0%	229, 80+/- 6%
		Beta	593	40		0.00	0 00	140 97	73 20	0 00	0.00
		Ratio	1	00		0.0000	0 0000	0 2376	0 1234	0 0000	
			-					0. 20/0	0. 1201		
02.6	DONT	B a	507	00		0.00	0.00	343 80	252 20	0.00	221 80
02 1	-RUN I	Raw	337	00		0.00	0.00	203. 70	253.30	0.00	231.80
		каш	333	00		0.00	0.00	287.40	216. 10	0.00	247.70
		каш	284	50		0.00	0.00	273. 20	234. 50	0.00	218 70
		Ave	559	83+/-	5%	0.00+/- 0%	0.00+/- 0%	274.83+/- 4%	234. 63+/~ 8%	0.00+/- 0%	232.73+/- 6%
		Beta	327.	10		0.00	0.00	42.10	1, 90	Ö. ÖO	Ö. 00
		Ratio	1.	00		0.0000	0.0000	0. 1287	0.0058	0. 0000	
82 1	ACK	Rau	457	90		0 00	0.00	275 30	234 30	0.00	225 00
		Rau	441	10		0.00	0.00	299 30 '	244.90	0.00	209 20
		Raw	475	40		0.00	0.00	261 204	254 20	0.00	220 50
		Naw	475			0.00	•	201. 30*	234.20	0.00	EEC. JO
		Ave	464	80+/-	2%	0.00+/- 0%	0.00+/- 0%	282.30+/- 4%	245. 13+/- 4%	0.00+/- 0%	218.23+/- 4%
		Beta	246	57		0.00	0.00	64.07	26. 90	0.00	0.00
		Ratio	1.	00		0.0000	0.0000	0. 2598	0. 1091	0.0000	
83 F	RONT	Raw	0	98		0.00	0.00	1.06+	0. 94	0. 00	0.87
		Raw	0	98		0.00	0.00	0.88=	0.96	0.00	0.85
-		Raw	0	95		O. OO	0.00	0. 92#	0. 86+	0. 00	0. 90
			•	8747	-	0.00./ 07	0 004 / 07	0.00./.10%	0.05./ 17	0.0047.08	0.07.4.07
		Dete		7/+/-	24	0.00+/- 0%	0.00+/- 0%	0.00+/~10%	0.73777 1%	0.00+/- 0%	0.07+7- 3%
		Beta	0	09		0.00	0.00	0.00	0.08	0.00	0.00
		Hat10	1	00		0.0000	0.0000	0.0000	0. 8408	0.0000	
		25				2.21					
83 I	BACK	Raw	0	94		0.00	0.00	0.89	0. 94	0.00	0.82
		Raw	0	94		0.00	0.00	0. 93	0. 92	0.00	0. 92*
		Raw	0	87		0.00	0.00	0. 95	0. 95	0.00	0.85
		Ave	0	92+/-	4%	0.00+/- 0%	0.00+/- 0%	0.92+/- 4%	0.94+/- 2%	0.00+/- 0%	0.84+/- 2%
		Beta	0	08		0.00	0.00	0.09	0.10	0.00	0.00
		Ratio	i	00		0.0000	0,0000	1.1000	1.3000	0.0000	

SUMMARY OF DOSIMETER READINGS

٠

1

.

.

(# indicates a rejected flier)

II.45

.

Dosimeter		MYL	AR #1		.005" #2	. 010" #3	. 020" #4	, 032" #5	.064" #6	. 125" #7
		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
04 CD011		= 0	0.7.*		0.00	0.00	50 00	45 74	0.00	47.10
84 FRUNI	Raw	50	24		0.00	0.00	47 55	40.74	0.00	47.10
	Raw	33	29		0.00	0.00	4/. 50	46.30	0.00	43.30
 	Raw	22	88		0.00	Q. UQ	40, 57		0.00	4J.14
	Ave	54	56+/-	3%	0.00+/- 07	6 0.00+/- 0X	48. 34+/- 5%	44.82+/- 5%	0.00+/- 0%	44.57+/- 5%
	Beta	9	99		0.00	0.00	3.77	0. 25	0.00	0.00
	Ratio) 1.	00		0. 0000	0. 0000	0. 3772	0. 0247	0. 0000	
 De DACK							E0 74		0.00	45.70
84 BACK	каш		23		0.00	0.00	53.76	47.41	0.00	45.70
	Raw	64.	84#		0.00	0.00	51.90	40.99	0.00	44.18
	каш	/0	96		0.00	0.00	JU. 14#	43.04#	0.00	47.14#
	Ave	71	10+/-	0%	0.00+/- 07	0.00+/- 0%	52. 83+/- 2%	47. 20+/- 1%	0.00+/- 0%	44.94+/- 2%
 	Beta	26	16		0.00	0. 00	7.89	2.26	0.00	0.00
	Ratio	0 1.	00		0. 0000	0. 0000	0. 3017	0.0864	0. 0000	
85 FRONT	Raw	16	99		0.00	0.00	16.35	14.76	0.00	17, 12
03 11011	Raw	16	94		0.00	0.00	17.28	15.06	0.00	16.66
	Raw	18	19		0.00	0. 00	16.06	15.46	0.00	16. 81
	Av. 8	17	37+/-	47	0.00+/- 0	0 00+/- 0%	14 54+/- 47	15 09+/- 27	0 00+/~ 07	16 B6+/- 17
	Beta		51	44	0.0000	0.00	0.00	0.00	0.00	0.00
	Ratio	0 1	00		0. 0000	0.0000	0. 0000	0. 0000	0. 0000	0.00
 85 BACK	Raw	15	73		0.00	0.00	18.82	17.92	0.00	16. 39
	Raw	16	92		0.00	0.00	17.68	17.38	0.00	15. 94
	Raw	16	87		0.00	0.00	18. 36	18.06	0.00	15. 52
	Ave	16	51+/-	4%	0.00+/- 07	0.00+/- 0%	18.29+/- 3%	17.79+/- 2%	0.00+/- 0%	15.95+/- 3%
	Beta	0	56		0.00	0.00	2.34	1.84	0.00	0.00
	Ratio) 1	00		0. 0000	0. 0000	4. 1479	3. 2603	0.0000	
					0.00	0.00	785 40	742 70	0.00	752 50
BO FRUNI	Raw	1062	00		0.00	0.00	775.60	774 00	0.00	734 10
	Пан	1002	00		0.00	0.00	797 90	775 20	0.00	750.80
		TOOL								
	Ave	1068	33+/-	7%	0.00+/- 0	0.00+/- 0%	786.07+/- 1%	770.97+/~ 1%	0.00+/~ 0%	746.80+/- 1%
	Beta	321	53		0.00	0.00	39. 27	24.17	0.00	0.00
	Ratio	0 1	00		0. 0000	0.0000	0. 1221	0.0752	0. 0000	
BA BÁCH	Bart	1020	00		0.00	0.00	855 30	804 30	0.00	732 50
SO BACK	Raw	975	10		0.00	0.00	800 30	834 70	0.00	769 00
	Raw	921	30		0.00	0.00	853. 90	790. 50	0. 00	686. 50*
	Ave	975	13+/-	6%	0.00+/- 0	× 0.00+/- 0%	836. 50+/- 4%	810. 50+/- 3%	0.00+/- 0%	750.75+/- 3%
	Beta	224	38		0.00	0.00	85.75	59.75	0.00	0.00
	Ratic	0 1	00		0.0000	0.0000	0. 3922	0. 2663	0.0000	

• •

SUMMARY OF DOSIMETER READINGS

(* indicates a rejected flier)

11.46

•

٠

.

٠

•

	Dosi	imeter		MYL	AR #1		. 0	05" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 12	5" #7
				(nc)			(nc)	(nc)	(nc)	(nc)	(nc)	(1	nc)
	87	FRONT	Raw	594	90			0.00	0.00	559.20	521.60	0.00	544	10
			Raw	604	40			0.00	0.00	529.40	549.80	0.00	539	30
			Raw	563	30			0.00	0.00	547 00	535 30	0.00	519	90
• • •		4						0.00	0.00	047.00		0,00		
			Ave	587	53+/-	47		0.00+/- 0%	0.00+/- 0%	545. 20+/- 3%	535.57+/- 3%	0. 00+/- 0X	534.	43+/- 2%
			Beta	53	10			0.00	0.00	10.77	1.13	0.00	0.	00
			Ratio	1	00		0.	0000	0.0000	0. 2028	0. 0213	0. 0000		
		8.80	5						0.00					
	8/	BACK	каш	224	80			0.00	0.00	535.80	513.70	0.00	515.	50
			Raw	532	. 00			0.00	0.00	576.60	544.00	0.00	503.	10
			Raw	564	. 20			0.00	0.00	534.40	545. 60	0.00	525.	80
			Ave	552	00+/-	3%		0.00+/- 0%	0.00+/- 0%	548.93+/- 4%	534. 43+/- 3%	0.00+/- 0%	514.	B0+/- 2%
			Beta	37	20			0.00	0.00	34 13	19.63	0.00	0	00
			Ratio		00		0.	0000	0.0000	0. 9176	0. 5278	0.0000		00
	88	FRONT	Raw	292	20			0 00	0.00	255 10	266 40	0.00	254	40
	00		Daw	204	40			0.00	0.00	250.00	260.40	0.00	252	70
			Daw	200	50			0.00	0.00	250.00	287.10	0.00	233.	50
			Rew	272				0.00	0.00	200. 30	270.20	0.00	247.	50
			Ave	293	77+/-	12		0.00+/- 0%	0.00+/- 0%	257.13+/- 3%	274.57+/- 5%	0.00+/- 0%	251.	87+/- 2%
			Beta	41	90			0.00	0.00	5. 27	22.70	0.00	Ö,	00
			Ratio	1	00		O . (0000	0. 0000	0. 1257	0. 5418	0.0000		
	89	BACK	Raw	262	00			0. 00	0.00	252. 40	262.80	0.00	254.	50
			Raw	275	50			0.00	0.00	275.00	252.40	0.00	252.	00
			Raw	276	80		1	0.00	0.00	255. 50	267.00	0.00	253.	70
			Ave	271	43+/-	3%		0.00+/- 0%	0.00+/- 0%	260 97+/- 5%	260 73+/- 32	0.00+/- 0%	253	40+/- 1%
			Reta	18	03			0.00	0.00	7 57	7 33	0.00	0	00
			Ratio	- 1	00		Ō.	0000	0.0000	0. 4196	0. 4067	0.0000		
	89	FRONT	Ваш	112	90			0.00	0.00	103 80	108 10	0.00	108	20
			Raw	112	00			0.00	0.00	104 40	102 40	0.00	110	60
			Raw	111	90			0.00	0.00	108.50	111.50	0.00	101	10
				-										
			Ave	112	27+/-	0%		0.00+/- 0%	0.00+/- 0%	105 57+/- 2%	107.33+/- 4%	0.00+/- 0%	106.	63+/- 5%
			Beta	5	63			0.00	0.00	0.00	0.70	0.00	O .	00
			Ratio	1	00		0.	0000	0.0000	0.0000	0. 1243	0.0000		
			- 10									-		
	89	BACK	Raw	113	50			0.00	0.00	102.10	103. BO	0.00	99.	45
			Raw	106	20			0.00	0.00	107.90	99.72	0.00	98 .	90
			Raw	105	30			0.00	0.00	95. 43	100.00	0.00	104.	00
			Ave	108	33+/-	4%		0.00+/- 0%	0.00+/- 0%	101.81+/- 6%	101. 17+/- 2%	0.00+/- 0%	100.	78+/- 312
			Beta	7	55			0.00	0.00	1.03	0.39	0.00	0	00
			Ratio	1	00		Ö.	0000	0.0000	0.1360	0.0517	0.0000		

SUMMARY OF DOSIMETER READINGS

.

(* indicates a rejected flier)

11.47

•

SUMMARY OF DOSIMETER READINGS

	Dosimeter		MYL	AR #1		. 005" #2		010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
			(nc)		(nc)		(nc)	(nc)	(nc)	(nc)	(nc)
	90 FRONT	Raw	373	80		0.00		0. 00	263. 50	220. 40	0.00	201. 50
		Raw	375	30		0.00		0.00	260.30	211.80	0.00	201.10
		Raw	370	. 40		0.00		0, 00	262, BO	228.80	0.00	178.70
		_										
		Ave	373	. 17+/-	17	0.00+/- 0	X	0.00+/- 0%	262.20+/- 1%	220. 33+/- 4%	0.00+/- 0%	200. 43+/- 1%
		Beta	1/2	. /3		0.00	~	0.00	01. //	17.70	0.00	0.00
		Ratio	5 1	. 00		0.0000	0	. 0000	0.35/6	0. 1152	0.0000	
												010 40
	AO RUCK	Raw	1030	. 00		0.00		0.00	482.30*	277.70	0.00	219.40
		каш	1005	. 00		0.00		0.00	381.90*	244.40*	0.00	231.80
		каш	951	. 40		0.00		0.00	455.00*	294. 30	0.00	236.90
		Ave	995	47+/-	42	0.00+/- 0	x	0.00+/- 0%	0.00+/-12%	297. 20+/- 1%	0.00+/- 0%	229. 37+/- 4%
		Beta	766	. 10		0.00		0.00	0.00	67.83	0.00	0.00
		Ratio	> 1	00		0.0000	ō	. 0000	0.0000	0. 0885	0.0000	
	91 FRONT	Raw	3330	. 00		0.00		0.00	932.00	751.40	0. 00	288.00
		Raw	3265	. 00		0.00		0.00	950.60	702. 90	0.00	261.60*
		Raw	3327	00		0.00		0. 00	941. 30	684. 30	0.00	297.80
		A	2207	224/		0.00+/- 0	~	0.00+/- 07	R41 20+/- 17	717 874/- 54	0 00+/- 07	202 00+/- 27
			2014	40	14	0.00+7= 0.	~	0.00+/~ 04	40 40	A10 07	0.00+7 = 0%	
		Deta	3014			0.00	~	0.00	0 7151		0.000	0.00
		Ratit		. 00		0.0000	. 0	. 0000	0.2151	0. 1375	0.0000	
		0	240			0.00		0.00	200 20	277 40	0.00	245 10*
	71 BACK		307	. 20*		0.00		0.00	212 80	277.00	0.00	273.40
		Raw	712	10		0.00		0.00	313.80	237.40	0.00	2/2.00
		Raw	377	. 10		0.00		0.00	200.20	201.70	0.00	207.00
		Ave	404	. 75+/-	3%	0.00+/- 0	χ.	0.00+/- 0%	299.73+/- 5%	265.57+/- 4%	0.00+/- 0%	270. 20+/- 1%
		Beta	134	. 55		0.00		0.00	29. 53	0.00	0.00	0.00
-		Ratio	5 1	. 00	- 140 Mar. 400 17 18	0. 0000	0	. 0000	0. 2195	0.0000	0.0000	
	92 FRONT	Raw	151	. 20		0.00		0.00	132.70	127. 20	0.00	126. 70
		Raw	152	. 60		0.00		0.00	128.60	126. 10	0.00	126.60
		Raw	152	. 10		0.00		0.00	131.30	127.70	0.00	132.40
		Av.	151	97+/-	07	0 00+/- 0	y	0 00+/- 07	130 87+/- 2%	127 00+/- 1%	0 00+/- 0%	128.57+/- 3%
		Beta		40	0/1	0.00		0.00	2.30	0.00	0.00	0.00
		Ratio	、 EJ	00		0.000	0	0000	0 0983	0.000	0 0000	0.00
		Navit	, 1	. 00		0.0000	Ū		0.0765	0.0000	0.0000	
-/	92 8464	Ram	155	20		0.00		0.00	137 30	119 10	0.00	119 90
	7E DACK	Raw	147	70		0.00		0.00	127 90	131 20	0.00	121 60
		Raw	153	20		0.00		0.00	137.90	126. 20	0.00	139. 80*
		Ave Bata	150	. 37+/-	4%	0.00+/- 0	2	0.00+/- 0%	134.37+/- 4%	129.50+/- 5%	0.00+/~ 0%	120.75+/~ 1%
		Dati.	27	00		0.00	ä	0.00	0 4500	0 1404	0.000	0.00
		ratio	, 1	. 00		0.0000	0		0.4398	0.1604	0.0000	

• •

(* indicates a rejected flier)

II.48

•

.

٠

 Dosimeter		MYLAR #1	.005" #2	, 010" #3	. 020" #4	, 032" #5	,064" #6	. 125" #7
		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
96 FRONT	Raw	53. 59	0.00	0.00	4B. 43	45.79	0.00	42. 23
	Raw	55. 91	0.00	0.00	46. 67	42. 77	0.00	40. 80
 	Raw	51.50	0.00	0.00	47. 25	45, 31	0,00	40. 71
	Ave	53.67+/~ 4%	0.00+/- 0%	0.00+/- 0%	47.45+/- 2%	44 62+/- 4%	0.00+/- 0%	41.25+/- 2%
	Beta	12.42	0.00	0.00	6 20	3 38	0.00	0.00
	Ratio	1.00	0.0000	0. 0000	0. 4995	0. 2719	0. 0000	
 96 BACK	Raw	51.13	0.00	0.00	43. 55	39.66	0.00	34.05+
	Raw	51. 09	0.00	0.00	44.64	39. 53	0.00	42.33
	Raw	52.01	0.00	0.00	44.94	41.39	0.00	40. 40
	Ave	51.41+/- 1%	0.00+/- 0%	0.00+/- 0%	44.38+/- 2%	40 19+/- 3%	0.00+/- 0%	41. 37+/- 3%
	Beta	10.04	0.00	0.00	3.01	0.00	0.00	0.00
 	Ratio	1.00	0. 0000	0. 0000	0. 2998	0.0000	0. 0000	
97 FRONT	Raw	20. 55	0.00	0.00	19. 91	18.87	0.00	18.00
	Raw	20. 37	0.00	0.00	18.94	18.52	0.00	18. 34
 	Raw	19.89	0.00	0.00	18. 71	17.60	0.00	18.02
	Ave	20. 27+/- 2%	0.00+/- 0%	0.00+/~ 0%	19.19+/- 3%	18.33+/- 4%	0.00+/- 0%	18, 12+/- 1%
	Beta	2.15	0.00	0.00	1.07	0.21	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0. 4961	0. 0977	0.0000	
 97 BACK	Raw	18.74	0.00	0.00	18.15	19.67	0.00	19.25
	Raw	18.32	0.00	0.00	18.08	19.75	0.00	18. 35
	Raw	16.64*	0.00	0.00	18.38	1B. 75	0.00	18.45
	Ave	18.53+/- 2%	0.00+/- 0%	0.00+/- 0%	18.20+/- 1%	19.39+/- 3%	0.00+/- 0%	18.68+/- 3%
	Beta	0.00	0.00	0.00	0.00	0.71	0.00	0.00
 	Ratio	1.00	0. 0000	0. 0000	0.0000	0.0000	0.0000	

SUMMARY OF DOSIMETER READINGS

· · ·

*

Pre-Flushing of the Reactor Building Basement, TLD Measurements -- DCH-6-82

٠

.

.

.

(* indicates a rejected flier)

II.49

Dosimete	г	MYLAR #1	. 005" #2	. 010" #3	. 020" #4	. 032" #5	. 064" #6	. 125" #7
		(nc)	(nc)	(nc)	(nc)	(nc)	(nc)	(nc)
93 FRON	T Raw	92, 12	0.00	0.00	96. 34	92. 24	0.00	B4. 32
/= ///	Raw	94.96	0.00	0.00	92.76	87. 96	0.00	92. 92
	Raw	93. 34	0.00	0.00	93. 77	92. 32	0.00	88.72
							0.00.00	
	Ave	93.47+/- 2%	0.00+/- 0%	0.00+/- 0%	94.29+/- 27	90.84+/- 3%	0.00+/- 0%	BB. 65+/- 5%
	Beta	4.82	0.00	0.00	5.64	2.19	0.00	0.00
	Ratio	1.00	0. 0000	0.0000	1. 1694	0. 4537	0. 0000	
00 0.00				A		01 70	0.00	00.74
93 BACK	Raw	91.78	0.00	0.00	86.72	BI. 70	0.00	82.74
	Raw	89.95	0.00	0.00	89.44	85.26	0.00	81.21
	Raw	87.64	0.00	0.00	87.84	85.14	0.00	81. 12
	Ave	89.79+/- 2%	0.00+/- 0%	0.00+/- 0%	88. 73+/- 2%	84. 03+/- 2%	0.00+/- 0X	81.69+/- 1%
	Beta	B. 10	0.00	0.00	7.04	2.34	0.00	0.00
	Ratio	1.00	0. 0000	0.0000	0.8695	0. 2893	0. 0000	
	_				· · · ·			
94 FRON	T Raw	907.70	0.00	0.00	424. 50	338.80	0.00	267. 90
	Raw	936. 20	Ö. 00	0.00	424.00	338. 60	0.00	276. 20
	Raw	955.20	0. 00	0. 00	408. 20	324. BO	0.00	237.00*
	Ave	933. 03+/- 3%	0. 00+/- 0%	0.00+/- 0%	418. 90+/- 2%	334. 07+/- 2%	0.00+/- 0%	273. 05+/- 2%
	Beta	659.98	0.00	0.00	145.85	61.02	0.00	0.00
	Ratio	1.00	0. 0000	0. 0000	0. 2210	0. 0925	0. 0000	
94 BACK	Raw	393. 20	0.00	0.00	265.00	226. 40	0.00	224. 90
	Raw	397.90	0.00	0.00	267.00	234.60	0.00	226.00
	Raw	385.30	0.00	0.00	227. 00*	226. 10	0.00	211.00
	A∨e	392. 13+/- 2%	0.00+/- 0%	0.00+/- 0%	266.00+/- 1%	229.03+/- 2%	0.00+/- 0%	220. 63+/~ 4%
	Beta	171.50	0.00	0.00	45.37	8.40	0.00	0.00
	Ratio	1.00	0.0000	0.0000	0. 2645	0. 0490	0. 0000	
95 FRON	T Raw	475.90	0.00	0.00	260.00*	195. 40	0.00	157.10*
	Raw	463. 90	0. 00	0.00	225. 20	188. 90	0.00	136. 70
	Raw	465.00	0. 00	0.00	216. 70	200. 10	0, 00	132. 50
	Ave	468.27+/- 1%	0.00+/- 0%	0.00+/- 0%	220.95+/- 3%	194.80+/- 3%	0.00+/- 0%	134. 60+/- 2%
	Beta	333. 67	0.00	0.00	86.35	60. 20	0.00	Ö. 00
	Ratio	1.00	0.0000	0.0000	0. 2588	0. 1804	0. 0000	
95 BACK	Raw	298.60	0.00	0.00	145.10#	127.50	0.00	116.70
	Raw	306. 50	0. 00	0.00	170. 90*	128.50	0.00	120. 60
	Raw	308.30	0. 00	0.00	160.00*	137.40	0.00	119.00
	Ave	304 47+/- 2%	0.00+/- 0%	0.00+/- 0%	0.00+/- 8%	131. 13+/- 4%	0.00+/~ 0%	118.77+/- 2%
	Beta	185.70	0.00	0.00	0.00	12. 37	0.00	0.00
	Ratio	1.00	0 0000	0 0000	0 0000	0.0666	0.0000	

SUMMARY OF DOSIMETER READINGS

-

- ----

· · ·

(# indicates a rejected flier)

II.50

*** RESULTS ***

.

.

CALCULATED DOSES

۲

- -

Dosimeter			alibration	Factors			Mylar Chip	Calculat	ed Beta	Calculat	ed Gamma
	. 005"	. 010"	. 020"	. 032"	. 064"	Ave.	Reading	Dose	Error	Dose	Error
	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(nc)	(rad)	(rađ)	(rad)	(rad)
81 FRONT	0.00	0.00	0.46	0.43	0. 00	0.44	402. 63	178. 57	16.16	50. 64	4,88
81 BACK	0. 00	0.00	0.43	0.45	0.00	0.44	593.40	260. 25	12. 37	46. 81	5. 31
62 FRONT	0.00	0.00	0. 51	0. 58	0.00	0. 54	327.10	178.12	24.04	47.41	5, 31
82 BACK	0.00	0.00	0. 41	0. 47	0. 00	0.44	246. 57	108.06	11.39	44. 45	4. 45
83 FRONT	0.00	0.00	0. 60	0. 22	0. 00	0.41	0.09	0. 04	0. 03	0.18	0. 02
83 BACK	0.00	0, 00	0. 22	0.22	0.00	0. 22	0.08	0. 02	0. 01	0. 17	0. 02
84 FRONT	0.00	0.00	0. 32	0. 56	0.00	0.44	9, 99	4. 41	2. 11	9.08	0. 96
84 BACK	0.00	0. 00	0.38	0. 49	0.00	0.44	26.16	11.39	2.16	9.15	0.88
85 FRONT	0.00	0.00	0. 60	0. 59	0.00	0. 60	0. 51	0. 30	0. 44	3.44	0. 32
85 BACK	0. 00	0.00	0. 22	0.22	0.00	0. 22	0. 56	0. 12	0.18	3. 25	0. 31
86 FRONT	0.00	0.00	0. 51	0. 50	Ö. 00	0. 51	321. 53	163. 45	35. 80	152.12	14. 28
B6 BACK	0.00	0.00	0.32	0. 29	0.00	0. 31	224.38	68.4 8	18, 71	152. 93	15. 16
87 FRONT	0.00	0.00	0. 45	0. 56	0. 00	0. 51	53. 10	26, 99	13. 42	108.86	10. 46
87 BACK	0.00	0.00	0. 22	0.22	0.00	0. 22	37. 20	8.11	4 . 54	104.86	10.02
88 FRONT	0.00	0.00	0. 51	0. 22	0. 00	0. 36	41. 90	15. 24	8.79	51.31	4. 83
00 BACK	0.00	0.00	0. 29	0. 22	0.00	0. 25	18.03	4. 59	2. 30	51. 62	4. 81
89 FRONT	0.00	0.00	0. 60	0.45	0. 00	0. 53	5. 63	2. 97	2.69	21. 72	2. 26
89 BACK	0.00	0.00	0. 50	0. 53	0.00	0. 52	7. 55	3. 90	2. 74	20. 53	1. 99
90 FRONT	0.00	0.00	0.34	0.46	0. 00	0. 40	172. 73	68. 83	15.11	40, 83	3. 81
90 BACK	0.00	0.00	0. 60	0.49	0. 00	0. 55	766.10	418.54	65.19	46.72	4.72
91 FRONT	0.00	0.00	0.44	0.43	0.00	0.44	3014.43	1320. 44	26. 10	59. 66	5. 73
91 BACK	0.00	0.00	0.44	0. 59	0.00	0. 51	134. 55	69.16	15. 32	55. 04	5. 17
92 FRONT	0.00	0.00	0.53	0. 59	0.00	0. 56	23.40	13.08	2.13	26.19	2. 53
92 BACK	0.00	0.00	0.26	0.41	0.00	0.34	29. 62	9. 93	3. 87	24.60	2. 30
93 FRONT	0.00	0.00	0. 22	0. 22	0.00	0. 22	4. 82	1.05	0. 99	18.06	1.89
93 BACK	0.00	0.00	0.22	0. 27	0.00	0. 24	8.10	1.96	Ō. 61	16. 64	1.56
94 FRONT	0.00	Ō. ÖÖ	0.44	0. 49	Ō. OO	0.46	659. 98	304.89	24. 67	55. 62	5. 25
94 BACK	0.00	0.00	0.41	0. 53	0. 00	0. 47	171. 50	80. 60	16. 28	44. 94	4. 51
95 FRONT	0.00	0.00	0. 41	0. 39	0. 00	0. 40	333. 67	133. 10	6.12	27. 42	2. 62
95 BACK	0.00	0.00	0. 60	0. 51	0.00	0. 56	185. 70	103.72	12.02	24.19	2. 29
96 FRONT	0.00	Õ. ÖÖ	0. 23	0. 29	0.00	0. 26	12. 42	3. 21	0. 78	8.40	0. 80
96 BACK	O. OO	0.00	0.38	0.59	O. OO	0.48	10.04	4.86	1.64	B. 43	0.83

*** RESULTS ***

٠

.

CALCULATED DOSES

-

.

• •

Dosimeter		c	alibration	Factors			Mylar Chip	Calculate	d Beta	Calculater	Gamma	
	. 005"	. 010"	020"	. 032"	. 064"	Ave.	Reading	Dose	Error	Dose	Error	
	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(rad/nc)	(nc)	(rad)	(rad)	(rad)	(rad)	
97 FRONT	0.00	0 00	0.23	0.48	0.00	0.36	2 15	0 77	0 40	3 49	0.35	
97 BACK	0.00	0.00	0. 60	0. 59	0.00	0. 60	0.00	0.00	0.00	3.81	0.37	

Pre-Flushing of the Reactor Building Basement, TLD Measurements -- DCH-6-82

•

.

*** SUMMARY OF DOSES AND DOSE RATES ***

Dosimeter	Beta	Gamma	Exposure	Beta Dose Rate	Gamma Dose Rate	
	Dose	Dose	Time	Error	Error	
	(rad)	(rad)	(hr)	(rad/hr) (rad/hr)	(rad/hr) (rad/hr)	
81 FRONT	178.57	50.64	3.1	5.72E+01 5.18E+00	1.62E+01 1.56E+00	
B1 BACK	260.25	46.81	3.1	B. 34E+01 3. 96E+00	1. 50E+01 1. 70E+00	
82 FRONT	178.12	47.41	3.1	5.71E+01 7.70E+00	1. 52E+01 1. 70E+00	
82 BACK	108.06	44.45	3.1	3. 46E+01 3. 65E+00	1. 42E+01 1. 43E+00	
83 FRONT	0.04	0.18	1.0	3.78E-02 2.83E-02	1.78E-01 1.75E-02	
83 BACK	0.02	0.17	1.0	1.74E-02 9.10E-03	1.70E-01 1.62E-02 /	
84 FRONT	4.41	9.08	3.1	1. 41E+00 6. 77E-01	2.91E+00 3.06E-01	
84 BACK	11.39	9.15	3.1	3. 65E+00 6. 92E-01	2,93E+00 2.82E-01	
OF FRONT	0 20	2.44		0 745-00 1 405-01	1 105+00 1 045-01	
BJ FRUNI	0.30	3.44	3.1	9.74E-02 1.42E-01	1. 100+00 1. 040-01	
BJ BACK	0.12	3.25	3. 1	3. 74E-02 5. 63E-02	1. 04E+00 1. 0IE~01	
BA FRONT	143 45	152 15	53	7 02E+01 1 54E+01	6 53E+01 6 13E+00	
B6 BACK	68.48	152.93	2.3	2.94E+01 8.03E+00	6. 56E+01 6. 51E+00	
					0,002,01,0,012,00	
87 FRONT	26. 99	108.86	2.3	1.16E+01 5.76E+00	4.67E+01 4.49E+00	
87 BACK	8.11	104.86	2.3	3.48E+00 1.95E+00	4. 50E+01 4. 30E+00	
88 FRONT	15.24	51.31	2.3	6. 54E+00 3. 77E+00	2. 20E+01 2. 07E+00	
88 BACK	4. 59	51.62	2.3	1.97E+00 9.89E-01	2. 22E+01 2. 06E+00	
89 FRONT	2.97	21.72	2.3	1.27E+00 1.15E+00	9. 32E+00 9. 69E-01	
B9 BACK	3.90	20. 53	2.3	1.6/E+00 1.18E+00	8. 81E+00 8. 55E-01	
ON FRONT	40 03	40.02		2 225+01 4 805+00	1 225+01 1 245+00	
90 RACK	418 54	40.03	3.1	1 345+02 2 125+01	1 525+01 1 535+00	
JO DHCK	410.04	40.72	D . 1	1. SULVE E. IEL. UI	I. SEL OF T. SSL OF	and the second sec
91 FRONT	1320.44	59.66	3.1	4, 29E+02, 8, 47E+00	1.94E+01 1.86E+00	
91 BACK	69, 16	55.04	3. i	2.25E+01 4.98E+00	1.79E+01 1.68E+00	
92 FRONT	13.08	26.19	Э. İ	4. 25E+00 6. 92E-01	8. 50E+00 8. 21E-01	
92 BACK	9. 93	24.60	3.1	3. 22E+00 1. 26E+00	7. 99E+00 7. 47E-01	
93 FRONT	1.05	18.06	Э. 1	3. 41E-01 3. 21E-01	5.86E+00 6.15E-01	
93 BACK	1.96	16.64	Э. 1	6.37E-01 1.99E-01	5.40E+00 5.04E-01	
				TE BELLE BUELES		
94 FRUNT	304.89	55.62	3.1	9. 90E+01 8. 01E+00	1.81E+01 1.71E+00	
94 BACK	80.60	44. 74	3.1	2. 02E+UI J. 28E+UU	1. 40E+U1 1. 4/E+UU	
95 FRONT	133 10	27 42	3.1	4 32E+01 1 99E+00	8 90F+00 8 51F-01	
95 BACK	103.72	24.19	3.1	3. 37E+01 3. 90E+00	7. 85E+00 7. 42E-01	
10 01011	100.7E			2. 2. 2. 01 0. 702.00		
96 FRONT	3. 21	8.40	3. i	1.04E+00 2.52E-01	2. 73E+00 2. 60E-01	
96 BACK	4.86	8.43	3.1	1. 58E+00 5. 33E-01	2. 74E+00 2. 70E-01	

-

•

.

Pre-Flushing of the Reactor Building Basement, TLD Measurements -- DCH-6-82

*** SUMMARY OF DOSES AND DOSE RATES ***

and the second sec

.

-

Dosimeter	Beta	Gamma	Exposure	Beta Dose Rate	Gamma Dose Rate	
	Dose	Dose	Time	Error	Error	
	(rad)	(rad)	(hr)	(rad/hr) (rad/hr)	(rad/hr) (rad/hr)	
97 ERONT	0 77	3 49	3.1	2 495-01 1 305-01	1 205+00 1 125-01	
97 BACK	0.00	3.81	3.1	0. 00E+00 0. 00E+00	1. 24E+00 1. 19E-01	

.

.

PNL-4714 UC-41

DISTRIBUTION

No. of Copies

OFFSITE

- 27 Center DOE Technical Information
- T. E. Cox EG&G Idaho, Inc. P.O. Box 88 Middletown, PA Inc. 17057
- D. J. McGoff 19901 Germantown R DOE Headquarters Germantown, MD 20 20545 Road
- J. W. Schmidt GPU Nuclear Corporation P.O. Box 400 Middletown, PA 17057
- F. Y. Tsar EG&G Inc. P.O. Box 1625 Radiation Measurement Programs Idaho Falls, ID Branch Tsang 83415

No. of Copies

ONSITE

- \sim DOE Richland Operations Office
- ч. <u>-</u>... Ransom Schreiber
- 42 Pacific Northwest Laboratory
- ΣZЗ R. Endres Essig Faust Eichner (5) Cummings (5)
- L B C G H Hetzer
 - McElroy Knowlton Hoenes
- Ρ. Т Munson
- Rathbun Roberson
- .Þ.:
- R. I. Scherpelz (15) Technical Information (5) Publishing Coordination (2)

٠